Properties

Label 4.2e6_3e4_5e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$129600= 2^{6} \cdot 3^{4} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 8 x^{5} + x^{4} - 8 x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 163\cdot 379 + 133\cdot 379^{2} + 6\cdot 379^{3} + 130\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 95 + 108\cdot 379 + 294\cdot 379^{2} + 278\cdot 379^{3} + 334\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 142 + 238\cdot 379 + 161\cdot 379^{2} + 106\cdot 379^{3} + 231\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 157 + 123\cdot 379 + 314\cdot 379^{2} + 322\cdot 379^{3} + 296\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 188 + 272\cdot 379 + 11\cdot 379^{2} + 112\cdot 379^{3} + 211\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 252 + 173\cdot 379 + 171\cdot 379^{2} + 325\cdot 379^{3} + 275\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 309 + 153\cdot 379 + 176\cdot 379^{2} + 168\cdot 379^{3} + 181\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 371 + 282\cdot 379 + 252\cdot 379^{2} + 195\cdot 379^{3} + 233\cdot 379^{4} +O\left(379^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)$
$(1,7)(2,4)(3,5)(6,8)$
$(1,3,2,8)(4,5,7,6)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,8)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,8)(4,7)(5,6)$$-4$
$2$$2$$(1,2)(3,8)$$0$
$4$$2$$(1,7)(2,4)(3,5)(6,8)$$0$
$4$$2$$(1,8)(2,3)(5,6)$$0$
$4$$2$$(1,3)(2,8)(5,6)$$0$
$2$$4$$(1,3,2,8)(4,5,7,6)$$0$
$2$$4$$(1,8,2,3)(4,5,7,6)$$0$
$4$$4$$(1,7,2,4)(3,5,8,6)$$0$
$4$$8$$(1,7,8,5,2,4,3,6)$$0$
$4$$8$$(1,6,8,7,2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.