Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 49 + 50\cdot 467 + 28\cdot 467^{2} + 158\cdot 467^{3} + 139\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 59 + 367\cdot 467 + 148\cdot 467^{2} + 411\cdot 467^{3} + 177\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 102 + 228\cdot 467 + 80\cdot 467^{2} + 286\cdot 467^{3} + 364\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 319 + 331\cdot 467 + 385\cdot 467^{2} + 388\cdot 467^{3} + 209\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 405 + 423\cdot 467 + 290\cdot 467^{2} + 156\cdot 467^{3} + 42\cdot 467^{4} +O\left(467^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.