Properties

Label 4.2e6_3e4_17e2.8t23.4
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{6} \cdot 3^{4} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$1498176= 2^{6} \cdot 3^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} - 14 x^{4} - 22 x^{3} - 14 x^{2} + 20 x + 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 32 + \left(56 a + 50\right)\cdot 59 + \left(5 a + 12\right)\cdot 59^{2} + \left(34 a + 13\right)\cdot 59^{3} + \left(41 a + 48\right)\cdot 59^{4} + \left(10 a + 27\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 43 + \left(2 a + 36\right)\cdot 59 + \left(53 a + 21\right)\cdot 59^{2} + \left(24 a + 41\right)\cdot 59^{3} + \left(17 a + 55\right)\cdot 59^{4} + \left(48 a + 55\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 58 a + 11 + \left(46 a + 46\right)\cdot 59 + \left(34 a + 55\right)\cdot 59^{2} + \left(52 a + 32\right)\cdot 59^{3} + \left(35 a + 43\right)\cdot 59^{4} + \left(34 a + 4\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 40 + \left(24 a + 5\right)\cdot 59 + \left(48 a + 30\right)\cdot 59^{2} + \left(11 a + 4\right)\cdot 59^{3} + \left(14 a + 47\right)\cdot 59^{4} + \left(23 a + 19\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 1 + \left(34 a + 10\right)\cdot 59 + \left(10 a + 54\right)\cdot 59^{2} + \left(47 a + 26\right)\cdot 59^{3} + \left(44 a + 49\right)\cdot 59^{4} + \left(35 a + 28\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 18 + 28\cdot 59 + 36\cdot 59^{2} + 44\cdot 59^{3} + 7\cdot 59^{4} + 55\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 26 + 23\cdot 59 + 40\cdot 59^{2} + 21\cdot 59^{3} + 16\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ a + 10 + \left(12 a + 35\right)\cdot 59 + \left(24 a + 43\right)\cdot 59^{2} + \left(6 a + 50\right)\cdot 59^{3} + \left(23 a + 26\right)\cdot 59^{4} + \left(24 a + 3\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,3,4)(2,6,8,7)$
$(1,5,7)(3,4,6)$
$(1,2,3,8)(4,6,5,7)$
$(1,3)(4,7)(5,6)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $-4$
$12$ $2$ $(1,3)(4,7)(5,6)$ $0$
$8$ $3$ $(1,4,8)(2,3,5)$ $1$
$6$ $4$ $(1,2,3,8)(4,6,5,7)$ $0$
$8$ $6$ $(1,2,4,3,8,5)(6,7)$ $-1$
$6$ $8$ $(1,4,2,6,3,5,8,7)$ $0$
$6$ $8$ $(1,5,2,7,3,4,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.