Properties

Label 4.2e6_3e4_11e2.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{6} \cdot 3^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$627264= 2^{6} \cdot 3^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 8 x^{6} - 14 x^{5} - 14 x^{4} - 14 x^{3} - 14 x^{2} - 8 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 1 + \left(3 a + 16\right)\cdot 17 + \left(6 a + 5\right)\cdot 17^{2} + \left(11 a + 2\right)\cdot 17^{3} + \left(13 a + 1\right)\cdot 17^{4} + 17^{5} + \left(3 a + 5\right)\cdot 17^{6} + \left(5 a + 7\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 1 + 13\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + \left(3 a + 7\right)\cdot 17^{3} + \left(14 a + 6\right)\cdot 17^{4} + \left(3 a + 13\right)\cdot 17^{5} + \left(8 a + 12\right)\cdot 17^{6} + \left(4 a + 9\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 1 + \left(9 a + 6\right)\cdot 17 + 3 a\cdot 17^{2} + \left(12 a + 1\right)\cdot 17^{3} + \left(9 a + 14\right)\cdot 17^{4} + \left(7 a + 8\right)\cdot 17^{5} + \left(11 a + 12\right)\cdot 17^{6} + \left(10 a + 10\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 12 + \left(16 a + 2\right)\cdot 17 + \left(a + 16\right)\cdot 17^{2} + \left(13 a + 12\right)\cdot 17^{3} + \left(2 a + 16\right)\cdot 17^{4} + \left(13 a + 2\right)\cdot 17^{5} + 8 a\cdot 17^{6} + \left(12 a + 6\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 15 + \left(13 a + 5\right)\cdot 17 + \left(10 a + 8\right)\cdot 17^{2} + \left(5 a + 7\right)\cdot 17^{3} + \left(3 a + 3\right)\cdot 17^{4} + \left(16 a + 5\right)\cdot 17^{5} + \left(13 a + 7\right)\cdot 17^{6} + \left(11 a + 9\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 13 + \left(7 a + 3\right)\cdot 17 + \left(13 a + 11\right)\cdot 17^{2} + \left(4 a + 9\right)\cdot 17^{3} + \left(7 a + 11\right)\cdot 17^{4} + \left(9 a + 6\right)\cdot 17^{5} + \left(5 a + 16\right)\cdot 17^{6} + \left(6 a + 9\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 4 + 16\cdot 17^{2} + 11\cdot 17^{5} + 2\cdot 17^{6} + 2\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 6 + 3\cdot 17 + 8\cdot 17^{2} + 9\cdot 17^{3} + 14\cdot 17^{4} + 17^{5} + 11\cdot 17^{6} + 12\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,7,5)(2,8,4)$
$(1,6,2,3)(4,8,5,7)$
$(1,5,2,4)(3,7,6,8)$
$(1,2)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $-4$
$12$ $2$ $(1,2)(4,7)(5,8)$ $0$
$8$ $3$ $(3,5,8)(4,7,6)$ $1$
$6$ $4$ $(1,5,2,4)(3,7,6,8)$ $0$
$8$ $6$ $(1,8,5,2,7,4)(3,6)$ $-1$
$6$ $8$ $(1,8,3,4,2,7,6,5)$ $0$
$6$ $8$ $(1,7,3,5,2,8,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.