Properties

Label 4.2e6_3e4_11e2.5t4.2
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 3^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$627264= 2^{6} \cdot 3^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 11 x^{2} - 11 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 26 + \left(10 a + 20\right)\cdot 29 + \left(24 a + 16\right)\cdot 29^{2} + \left(19 a + 26\right)\cdot 29^{3} + \left(23 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 25\cdot 29 + 8\cdot 29^{2} + 20\cdot 29^{3} + 9\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 5 + \left(19 a + 12\right)\cdot 29 + \left(4 a + 8\right)\cdot 29^{2} + \left(3 a + 7\right)\cdot 29^{3} + \left(16 a + 19\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 28 + \left(9 a + 1\right)\cdot 29 + \left(24 a + 12\right)\cdot 29^{2} + \left(25 a + 18\right)\cdot 29^{3} + \left(12 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 5 + \left(18 a + 26\right)\cdot 29 + \left(4 a + 11\right)\cdot 29^{2} + \left(9 a + 14\right)\cdot 29^{3} + \left(5 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.