Properties

Label 4.2e6_3e3_97e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 3^{3} \cdot 97^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$16258752= 2^{6} \cdot 3^{3} \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 8 x^{4} - 18 x^{3} - x^{2} + 10 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 42 + \left(61 a + 59\right)\cdot 73 + \left(58 a + 46\right)\cdot 73^{2} + \left(27 a + 16\right)\cdot 73^{3} + \left(31 a + 23\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 64 + \left(64 a + 52\right)\cdot 73 + \left(37 a + 16\right)\cdot 73^{2} + \left(24 a + 70\right)\cdot 73^{3} + \left(67 a + 25\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 a + 18 + \left(8 a + 17\right)\cdot 73 + \left(35 a + 66\right)\cdot 73^{2} + \left(48 a + 32\right)\cdot 73^{3} + \left(5 a + 57\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 54 + 65\cdot 73 + 9\cdot 73^{2} + 15\cdot 73^{3} + 33\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 70 a + 51 + \left(11 a + 20\right)\cdot 73 + \left(14 a + 16\right)\cdot 73^{2} + \left(45 a + 41\right)\cdot 73^{3} + \left(41 a + 16\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 + 2\cdot 73 + 63\cdot 73^{2} + 42\cdot 73^{3} + 62\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(2,3)$$-2$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(2,3,6)$$1$
$4$$3$$(1,4,5)(2,3,6)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,2,4,3,5,6)$$0$
$12$$6$$(1,4,5)(2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.