Properties

Label 4.2e6_3e3_89e2.10t12.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 3^{3} \cdot 89^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$13687488= 2^{6} \cdot 3^{3} \cdot 89^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + x^{3} + x^{2} - x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 45 + \left(11 a + 14\right)\cdot 61 + \left(15 a + 3\right)\cdot 61^{2} + \left(22 a + 36\right)\cdot 61^{3} + \left(42 a + 48\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 56 + \left(8 a + 20\right)\cdot 61 + \left(9 a + 1\right)\cdot 61^{2} + \left(37 a + 24\right)\cdot 61^{3} + \left(7 a + 17\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 10\cdot 61 + 46\cdot 61^{2} + 51\cdot 61^{3} + 23\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 a + 3 + \left(49 a + 7\right)\cdot 61 + \left(45 a + 7\right)\cdot 61^{2} + \left(38 a + 43\right)\cdot 61^{3} + \left(18 a + 7\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 32\cdot 61 + 61^{2} + 37\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 50 + \left(52 a + 35\right)\cdot 61 + \left(51 a + 1\right)\cdot 61^{2} + \left(23 a + 52\right)\cdot 61^{3} + \left(53 a + 48\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3,2,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)(3,4)(5,6)$$-2$
$15$$2$$(1,5)(4,6)$$0$
$20$$3$$(1,2,6)(3,4,5)$$1$
$30$$4$$(1,6,5,4)$$0$
$24$$5$$(1,4,2,3,6)$$-1$
$20$$6$$(1,3,2,4,6,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.