Properties

Label 4.2e6_3e3_5e5.10t12.2c1
Dimension 4
Group $S_5$
Conductor $ 2^{6} \cdot 3^{3} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$5400000= 2^{6} \cdot 3^{3} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} - 10 x^{2} + 15 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 8 + \left(14 a + 9\right)\cdot 19 + \left(8 a + 13\right)\cdot 19^{2} + \left(16 a + 16\right)\cdot 19^{3} + \left(5 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 9 + \left(14 a + 8\right)\cdot 19 + \left(9 a + 1\right)\cdot 19^{2} + \left(a + 15\right)\cdot 19^{3} + \left(15 a + 16\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 15 + \left(4 a + 16\right)\cdot 19 + \left(10 a + 7\right)\cdot 19^{2} + \left(2 a + 5\right)\cdot 19^{3} + \left(13 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 10\cdot 19 + 18\cdot 19^{2} + 12\cdot 19^{3} + 11\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 1 + \left(4 a + 12\right)\cdot 19 + \left(9 a + 15\right)\cdot 19^{2} + \left(17 a + 6\right)\cdot 19^{3} + \left(3 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.