Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a + 17 + \left(9 a + 22\right)\cdot 41 + \left(17 a + 34\right)\cdot 41^{2} + \left(40 a + 37\right)\cdot 41^{3} + \left(23 a + 2\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 36 a + 36 + \left(7 a + 18\right)\cdot 41 + \left(5 a + 21\right)\cdot 41^{2} + \left(27 a + 22\right)\cdot 41^{3} + \left(36 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 a + 27 + \left(31 a + 33\right)\cdot 41 + \left(23 a + 35\right)\cdot 41^{2} + 18\cdot 41^{3} + \left(17 a + 34\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 + 2\cdot 41^{2} + 27\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 21 + \left(33 a + 6\right)\cdot 41 + \left(35 a + 29\right)\cdot 41^{2} + \left(13 a + 16\right)\cdot 41^{3} + \left(4 a + 6\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.