Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ a + 22 + \left(13 a + 11\right)\cdot 37 + \left(16 a + 13\right)\cdot 37^{2} + \left(a + 36\right)\cdot 37^{3} + \left(4 a + 7\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 a + 19 + \left(19 a + 35\right)\cdot 37 + \left(13 a + 28\right)\cdot 37^{2} + \left(19 a + 9\right)\cdot 37^{3} + \left(26 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 29 + 37 + 15\cdot 37^{2} + 27\cdot 37^{3} + 24\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 + 22\cdot 37 + 35\cdot 37^{2} + 11\cdot 37^{3} + 29\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 36 a + 26 + \left(23 a + 25\right)\cdot 37 + \left(20 a + 28\right)\cdot 37^{2} + \left(35 a + 25\right)\cdot 37^{3} + \left(32 a + 22\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 a + 12 + \left(17 a + 14\right)\cdot 37 + \left(23 a + 26\right)\cdot 37^{2} + \left(17 a + 36\right)\cdot 37^{3} + 10 a\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(2,3)$ |
| $(2,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$0$ |
| $6$ |
$2$ |
$(3,6)$ |
$-2$ |
| $9$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$3$ |
$(1,4,5)(2,3,6)$ |
$-2$ |
| $4$ |
$3$ |
$(1,4,5)$ |
$1$ |
| $18$ |
$4$ |
$(1,2)(3,5,6,4)$ |
$0$ |
| $12$ |
$6$ |
$(1,3,4,6,5,2)$ |
$0$ |
| $12$ |
$6$ |
$(1,4,5)(3,6)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.