Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 118\cdot 151 + 28\cdot 151^{2} + 95\cdot 151^{3} + 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 24 + 2\cdot 151 + 113\cdot 151^{2} + 87\cdot 151^{3} + 70\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 47 + 127\cdot 151 + 5\cdot 151^{2} + 106\cdot 151^{3} + 62\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 66 + 106\cdot 151 + 39\cdot 151^{2} + 48\cdot 151^{3} + 121\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 80 + 17\cdot 151 + 54\cdot 151^{2} + 40\cdot 151^{3} + 69\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 104 + 44\cdot 151 + 130\cdot 151^{2} + 89\cdot 151^{3} + 108\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 114 + 27\cdot 151 + 61\cdot 151^{2} + 84\cdot 151^{3} + 26\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 148 + 8\cdot 151 + 20\cdot 151^{2} + 52\cdot 151^{3} + 143\cdot 151^{4} +O\left(151^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,7)(3,8)(5,6)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,6)(7,8)$ |
| $(1,2)(3,6)(4,7)(5,8)$ |
| $(1,6)(4,5)$ |
| $(1,6)(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,3)(4,5)(7,8)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,7)(3,8)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,6)(4,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,6)(4,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,3)$ | $0$ |
| $2$ | $2$ | $(1,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(2,3)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,4)(3,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,8)(3,7)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,4)(3,5)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,7,6,8)(2,4,3,5)$ | $0$ |
| $2$ | $4$ | $(1,4,6,5)(2,8,3,7)$ | $0$ |
| $2$ | $4$ | $(1,2,6,3)(4,7,5,8)$ | $0$ |
| $2$ | $4$ | $(1,3,6,2)(4,7,5,8)$ | $0$ |
| $2$ | $4$ | $(1,8,6,7)(2,4,3,5)$ | $0$ |
| $2$ | $4$ | $(1,4,6,5)(2,7,3,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.