Properties

Label 4.2e6_3e2_5e2_7e2.8t22.9
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$705600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 7 x^{6} - 20 x^{5} + 42 x^{4} - 58 x^{3} + 52 x^{2} - 28 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 23 + 118\cdot 151 + 28\cdot 151^{2} + 95\cdot 151^{3} + 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 24 + 2\cdot 151 + 113\cdot 151^{2} + 87\cdot 151^{3} + 70\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 127\cdot 151 + 5\cdot 151^{2} + 106\cdot 151^{3} + 62\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 66 + 106\cdot 151 + 39\cdot 151^{2} + 48\cdot 151^{3} + 121\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 17\cdot 151 + 54\cdot 151^{2} + 40\cdot 151^{3} + 69\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 104 + 44\cdot 151 + 130\cdot 151^{2} + 89\cdot 151^{3} + 108\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 114 + 27\cdot 151 + 61\cdot 151^{2} + 84\cdot 151^{3} + 26\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 148 + 8\cdot 151 + 20\cdot 151^{2} + 52\cdot 151^{3} + 143\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,8)(5,6)$
$(1,3)(2,6)(4,7)(5,8)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,6)(7,8)$
$(1,2)(3,6)(4,7)(5,8)$
$(1,6)(4,5)$
$(1,6)(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,3)(4,5)(7,8)$ $-4$
$2$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $0$
$2$ $2$ $(1,3)(2,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,3)$ $0$
$2$ $2$ $(1,6)(7,8)$ $0$
$2$ $2$ $(2,3)(7,8)$ $0$
$2$ $2$ $(1,7)(2,4)(3,5)(6,8)$ $0$
$2$ $2$ $(1,4)(2,8)(3,7)(5,6)$ $0$
$2$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $0$
$2$ $4$ $(1,7,6,8)(2,4,3,5)$ $0$
$2$ $4$ $(1,4,6,5)(2,8,3,7)$ $0$
$2$ $4$ $(1,2,6,3)(4,7,5,8)$ $0$
$2$ $4$ $(1,3,6,2)(4,7,5,8)$ $0$
$2$ $4$ $(1,8,6,7)(2,4,3,5)$ $0$
$2$ $4$ $(1,4,6,5)(2,7,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.