Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 81\cdot 331 + 78\cdot 331^{2} + 58\cdot 331^{3} + 139\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 50 + 99\cdot 331 + 312\cdot 331^{2} + 51\cdot 331^{3} + 323\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 189 + 58\cdot 331 + 59\cdot 331^{2} + 180\cdot 331^{3} + 266\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 257 + 41\cdot 331 + 239\cdot 331^{2} + 214\cdot 331^{3} + 162\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 258 + 300\cdot 331 + 170\cdot 331^{2} + 55\cdot 331^{3} + 250\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 262 + 275\cdot 331 + 331^{2} + 146\cdot 331^{3} + 204\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 305 + 331 + 243\cdot 331^{2} + 280\cdot 331^{3} + 157\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 318 + 133\cdot 331 + 219\cdot 331^{2} + 5\cdot 331^{3} + 151\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(3,4)$ |
| $(1,7)(2,3)(4,5)(6,8)$ |
| $(1,6)(2,5)$ |
| $(1,8)(2,3)(4,5)(6,7)$ |
| $(1,6)(7,8)$ |
| $(1,3)(2,7)(4,6)(5,8)$ |
| $(1,4)(2,7)(3,6)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ | $-4$ |
| $2$ | $2$ | $(1,7)(2,3)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,6)(3,4)$ | $0$ |
| $2$ | $2$ | $(2,5)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $2$ | $4$ | $(1,7,6,8)(2,4,5,3)$ | $0$ |
| $2$ | $4$ | $(1,2,6,5)(3,7,4,8)$ | $0$ |
| $2$ | $4$ | $(1,4,6,3)(2,8,5,7)$ | $0$ |
| $2$ | $4$ | $(1,3,6,4)(2,8,5,7)$ | $0$ |
| $2$ | $4$ | $(1,8,6,7)(2,4,5,3)$ | $0$ |
| $2$ | $4$ | $(1,5,6,2)(3,7,4,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.