Properties

Label 4.2e6_3e2_5e2_7e2.8t22.6c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$705600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 3 x^{6} - 4 x^{5} + 3 x^{4} + 28 x^{3} + 37 x^{2} + 18 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 81\cdot 331 + 78\cdot 331^{2} + 58\cdot 331^{3} + 139\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 99\cdot 331 + 312\cdot 331^{2} + 51\cdot 331^{3} + 323\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 189 + 58\cdot 331 + 59\cdot 331^{2} + 180\cdot 331^{3} + 266\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 257 + 41\cdot 331 + 239\cdot 331^{2} + 214\cdot 331^{3} + 162\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 258 + 300\cdot 331 + 170\cdot 331^{2} + 55\cdot 331^{3} + 250\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 262 + 275\cdot 331 + 331^{2} + 146\cdot 331^{3} + 204\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 305 + 331 + 243\cdot 331^{2} + 280\cdot 331^{3} + 157\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 318 + 133\cdot 331 + 219\cdot 331^{2} + 5\cdot 331^{3} + 151\cdot 331^{4} +O\left(331^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(3,4)$
$(1,7)(2,3)(4,5)(6,8)$
$(1,6)(2,5)$
$(1,8)(2,3)(4,5)(6,7)$
$(1,6)(7,8)$
$(1,3)(2,7)(4,6)(5,8)$
$(1,4)(2,7)(3,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,5)(3,4)(7,8)$$-4$
$2$$2$$(1,7)(2,3)(4,5)(6,8)$$0$
$2$$2$$(1,6)(2,5)$$0$
$2$$2$$(1,3)(2,7)(4,6)(5,8)$$0$
$2$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$2$$2$$(1,6)(3,4)$$0$
$2$$2$$(2,5)(3,4)$$0$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$2$$(1,8)(2,3)(4,5)(6,7)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$4$$(1,7,6,8)(2,4,5,3)$$0$
$2$$4$$(1,2,6,5)(3,7,4,8)$$0$
$2$$4$$(1,4,6,3)(2,8,5,7)$$0$
$2$$4$$(1,3,6,4)(2,8,5,7)$$0$
$2$$4$$(1,8,6,7)(2,4,5,3)$$0$
$2$$4$$(1,5,6,2)(3,7,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.