Properties

Label 4.2e6_3e2_5e2_7e2.8t22.18c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$705600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 2 x^{6} + 8 x^{5} + 11 x^{4} - 20 x^{3} - 12 x^{2} + 7 x + 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 30\cdot 331 + 254\cdot 331^{2} + 72\cdot 331^{3} + 120\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 90 + 149\cdot 331 + 331^{2} + 284\cdot 331^{3} + 314\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 135 + 59\cdot 331 + 41\cdot 331^{2} + 90\cdot 331^{3} + 318\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 239 + 300\cdot 331 + 268\cdot 331^{2} + 224\cdot 331^{3} + 223\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 268 + 139\cdot 331 + 43\cdot 331^{2} + 82\cdot 331^{3} + 294\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 287 + 256\cdot 331 + 118\cdot 331^{2} + 165\cdot 331^{3} + 196\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 304 + 288\cdot 331 + 145\cdot 331^{2} + 108\cdot 331^{3} + 251\cdot 331^{4} +O\left(331^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 321 + 98\cdot 331 + 119\cdot 331^{2} + 296\cdot 331^{3} + 266\cdot 331^{4} +O\left(331^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,7,8)(2,5,6,3)$
$(1,4,7,8)(2,3,6,5)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,7)(4,8)$
$(1,8)(2,3)(4,7)(5,6)$
$(1,2)(3,4)(5,8)(6,7)$
$(1,6)(2,7)(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,6)(3,5)(4,8)$$-4$
$2$$2$$(1,2)(3,4)(5,8)(6,7)$$0$
$2$$2$$(1,6)(2,7)(3,4)(5,8)$$0$
$2$$2$$(1,3)(2,8)(4,6)(5,7)$$0$
$2$$2$$(1,7)(4,8)$$0$
$2$$2$$(3,5)(4,8)$$0$
$2$$2$$(1,4)(2,5)(3,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,7)(3,5)$$0$
$2$$4$$(1,4,7,8)(2,5,6,3)$$0$
$2$$4$$(1,4,7,8)(2,3,6,5)$$0$
$2$$4$$(1,3,7,5)(2,4,6,8)$$0$
$2$$4$$(1,6,7,2)(3,4,5,8)$$0$
$2$$4$$(1,2,7,6)(3,4,5,8)$$0$
$2$$4$$(1,3,7,5)(2,8,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.