Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 331 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 30\cdot 331 + 254\cdot 331^{2} + 72\cdot 331^{3} + 120\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 90 + 149\cdot 331 + 331^{2} + 284\cdot 331^{3} + 314\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 135 + 59\cdot 331 + 41\cdot 331^{2} + 90\cdot 331^{3} + 318\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 239 + 300\cdot 331 + 268\cdot 331^{2} + 224\cdot 331^{3} + 223\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 268 + 139\cdot 331 + 43\cdot 331^{2} + 82\cdot 331^{3} + 294\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 287 + 256\cdot 331 + 118\cdot 331^{2} + 165\cdot 331^{3} + 196\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 304 + 288\cdot 331 + 145\cdot 331^{2} + 108\cdot 331^{3} + 251\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 321 + 98\cdot 331 + 119\cdot 331^{2} + 296\cdot 331^{3} + 266\cdot 331^{4} +O\left(331^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,7,8)(2,5,6,3)$ |
| $(1,4,7,8)(2,3,6,5)$ |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,7)(4,8)$ |
| $(1,8)(2,3)(4,7)(5,6)$ |
| $(1,2)(3,4)(5,8)(6,7)$ |
| $(1,6)(2,7)(3,4)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,6)(3,5)(4,8)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,7)(3,4)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(3,5)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(3,5)$ | $0$ |
| $2$ | $4$ | $(1,4,7,8)(2,5,6,3)$ | $0$ |
| $2$ | $4$ | $(1,4,7,8)(2,3,6,5)$ | $0$ |
| $2$ | $4$ | $(1,3,7,5)(2,4,6,8)$ | $0$ |
| $2$ | $4$ | $(1,6,7,2)(3,4,5,8)$ | $0$ |
| $2$ | $4$ | $(1,2,7,6)(3,4,5,8)$ | $0$ |
| $2$ | $4$ | $(1,3,7,5)(2,8,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.