Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 36 + 141\cdot 211 + 191\cdot 211^{2} + 138\cdot 211^{3} + 187\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 51 + 111\cdot 211 + 128\cdot 211^{2} + 142\cdot 211^{3} + 85\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 75 + 60\cdot 211 + 17\cdot 211^{2} + 116\cdot 211^{3} + 68\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 81 + 86\cdot 211 + 91\cdot 211^{2} + 179\cdot 211^{3} + 168\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 109 + 126\cdot 211 + 26\cdot 211^{2} + 193\cdot 211^{3} + 163\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 121 + 211 + 114\cdot 211^{2} + 129\cdot 211^{3} + 32\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 182 + 21\cdot 211 + 4\cdot 211^{2} + 27\cdot 211^{3} + 165\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 190 + 83\cdot 211 + 59\cdot 211^{2} + 128\cdot 211^{3} + 182\cdot 211^{4} +O\left(211^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,6)$ |
| $(1,4)(2,3)(5,6)(7,8)$ |
| $(1,7)(4,8)$ |
| $(1,5)(2,4)(3,7)(6,8)$ |
| $(1,7)(3,5)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,8)(2,3)(4,7)(5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,6)(3,5)(4,8)$ | $-4$ |
| $2$ | $2$ | $(1,7)(2,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,4)(3,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(3,5)$ | $0$ |
| $2$ | $2$ | $(2,6)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,7)(3,4)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,8,7,4)(2,5,6,3)$ | $0$ |
| $2$ | $4$ | $(1,3,7,5)(2,8,6,4)$ | $0$ |
| $2$ | $4$ | $(1,2,7,6)(3,4,5,8)$ | $0$ |
| $2$ | $4$ | $(1,8,7,4)(2,3,6,5)$ | $0$ |
| $2$ | $4$ | $(1,5,7,3)(2,8,6,4)$ | $0$ |
| $2$ | $4$ | $(1,6,7,2)(3,4,5,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.