Properties

Label 4.2e6_3e2_5e2_7e2.8t22.13
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$705600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - x^{5} + 4 x^{4} + x^{3} + 3 x^{2} + 10 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 36 + 141\cdot 211 + 191\cdot 211^{2} + 138\cdot 211^{3} + 187\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 + 111\cdot 211 + 128\cdot 211^{2} + 142\cdot 211^{3} + 85\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 75 + 60\cdot 211 + 17\cdot 211^{2} + 116\cdot 211^{3} + 68\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 81 + 86\cdot 211 + 91\cdot 211^{2} + 179\cdot 211^{3} + 168\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 109 + 126\cdot 211 + 26\cdot 211^{2} + 193\cdot 211^{3} + 163\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 121 + 211 + 114\cdot 211^{2} + 129\cdot 211^{3} + 32\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 182 + 21\cdot 211 + 4\cdot 211^{2} + 27\cdot 211^{3} + 165\cdot 211^{4} +O\left(211^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 190 + 83\cdot 211 + 59\cdot 211^{2} + 128\cdot 211^{3} + 182\cdot 211^{4} +O\left(211^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)$
$(1,4)(2,3)(5,6)(7,8)$
$(1,7)(4,8)$
$(1,5)(2,4)(3,7)(6,8)$
$(1,7)(3,5)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,8)(2,3)(4,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $-4$
$2$ $2$ $(1,7)(2,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $0$
$2$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,7)(3,5)$ $0$
$2$ $2$ $(2,6)(3,5)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,7)(3,4)(5,8)$ $0$
$2$ $4$ $(1,8,7,4)(2,5,6,3)$ $0$
$2$ $4$ $(1,3,7,5)(2,8,6,4)$ $0$
$2$ $4$ $(1,2,7,6)(3,4,5,8)$ $0$
$2$ $4$ $(1,8,7,4)(2,3,6,5)$ $0$
$2$ $4$ $(1,5,7,3)(2,8,6,4)$ $0$
$2$ $4$ $(1,6,7,2)(3,4,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.