Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 211 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 26 + 93\cdot 211 + 85\cdot 211^{2} + 17\cdot 211^{3} + 151\cdot 211^{4} + 138\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 49 + 114\cdot 211 + 176\cdot 211^{2} + 2\cdot 211^{3} + 147\cdot 211^{4} + 131\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 + 71\cdot 211 + 72\cdot 211^{2} + 26\cdot 211^{3} + 101\cdot 211^{4} + 44\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 83 + 160\cdot 211 + 122\cdot 211^{2} + 80\cdot 211^{3} + 14\cdot 211^{4} + 197\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 130 + 67\cdot 211 + 167\cdot 211^{2} + 26\cdot 211^{3} + 62\cdot 211^{4} + 198\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 149 + 122\cdot 211 + 59\cdot 211^{2} + 77\cdot 211^{3} + 33\cdot 211^{4} + 193\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 165 + 45\cdot 211 + 154\cdot 211^{2} + 35\cdot 211^{3} + 12\cdot 211^{4} + 104\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 183 + 168\cdot 211 + 5\cdot 211^{2} + 155\cdot 211^{3} + 111\cdot 211^{4} + 47\cdot 211^{5} +O\left(211^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,8)(4,6)$ |
| $(2,8)(3,5)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,3)(2,6)(4,8)(5,7)$ |
| $(1,4)(2,5)(3,8)(6,7)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,7)(2,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,8)(3,5)(4,6)$ | $-4$ |
| $2$ | $2$ | $(2,8)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,6)(4,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(3,5)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)(3,4)(5,6)$ | $0$ |
| $2$ | $4$ | $(1,3,7,5)(2,4,8,6)$ | $0$ |
| $2$ | $4$ | $(1,8,7,2)(3,6,5,4)$ | $0$ |
| $2$ | $4$ | $(1,6,7,4)(2,5,8,3)$ | $0$ |
| $2$ | $4$ | $(1,5,7,3)(2,4,8,6)$ | $0$ |
| $2$ | $4$ | $(1,6,7,4)(2,3,8,5)$ | $0$ |
| $2$ | $4$ | $(1,2,7,8)(3,6,5,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.