Properties

Label 4.2e6_3e2_5e2_7e2.8t22.10
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$705600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 10 x^{6} - 15 x^{5} + 28 x^{4} - 34 x^{3} + 30 x^{2} - 21 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 211 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 26 + 93\cdot 211 + 85\cdot 211^{2} + 17\cdot 211^{3} + 151\cdot 211^{4} + 138\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 49 + 114\cdot 211 + 176\cdot 211^{2} + 2\cdot 211^{3} + 147\cdot 211^{4} + 131\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 61 + 71\cdot 211 + 72\cdot 211^{2} + 26\cdot 211^{3} + 101\cdot 211^{4} + 44\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 83 + 160\cdot 211 + 122\cdot 211^{2} + 80\cdot 211^{3} + 14\cdot 211^{4} + 197\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 130 + 67\cdot 211 + 167\cdot 211^{2} + 26\cdot 211^{3} + 62\cdot 211^{4} + 198\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 149 + 122\cdot 211 + 59\cdot 211^{2} + 77\cdot 211^{3} + 33\cdot 211^{4} + 193\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 165 + 45\cdot 211 + 154\cdot 211^{2} + 35\cdot 211^{3} + 12\cdot 211^{4} + 104\cdot 211^{5} +O\left(211^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 183 + 168\cdot 211 + 5\cdot 211^{2} + 155\cdot 211^{3} + 111\cdot 211^{4} + 47\cdot 211^{5} +O\left(211^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8)(4,6)$
$(2,8)(3,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,7)(2,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-4$
$2$ $2$ $(2,8)(3,5)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $0$
$2$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,7)(2,8)$ $0$
$2$ $2$ $(1,7)(3,5)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,3,7,5)(2,4,8,6)$ $0$
$2$ $4$ $(1,8,7,2)(3,6,5,4)$ $0$
$2$ $4$ $(1,6,7,4)(2,5,8,3)$ $0$
$2$ $4$ $(1,5,7,3)(2,4,8,6)$ $0$
$2$ $4$ $(1,6,7,4)(2,3,8,5)$ $0$
$2$ $4$ $(1,2,7,8)(3,6,5,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.