Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 46 + 46\cdot 199 + 189\cdot 199^{2} + 111\cdot 199^{3} + 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 70 + 77\cdot 199 + 60\cdot 199^{2} + 150\cdot 199^{3} + 13\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 84 + 104\cdot 199 + 184\cdot 199^{2} + 128\cdot 199^{3} + 29\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 102 + 78\cdot 199 + 92\cdot 199^{2} + 80\cdot 199^{3} + 62\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 113 + 50\cdot 199 + 57\cdot 199^{2} + 38\cdot 199^{3} + 7\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 117 + 30\cdot 199 + 178\cdot 199^{2} + 178\cdot 199^{3} + 6\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 122 + 71\cdot 199 + 172\cdot 199^{2} + 68\cdot 199^{3} + 183\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 142 + 137\cdot 199 + 60\cdot 199^{2} + 38\cdot 199^{3} + 93\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,3)$ |
| $(1,2)(3,7)(4,6)(5,8)$ |
| $(1,7)(4,8)$ |
| $(1,7)(5,6)$ |
| $(1,8)(2,5)(3,6)(4,7)$ |
| $(1,4)(2,5)(3,6)(7,8)$ |
| $(1,3)(2,7)(4,6)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,7)(2,3)(4,8)(5,6)$ | $-4$ |
| $2$ | $2$ | $(1,7)(2,3)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,7)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,5)(3,6)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,6)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,4)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(2,3)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,8)(3,4)(5,7)$ | $0$ |
| $2$ | $4$ | $(1,4,7,8)(2,6,3,5)$ | $0$ |
| $2$ | $4$ | $(1,5,7,6)(2,4,3,8)$ | $0$ |
| $2$ | $4$ | $(1,3,7,2)(4,5,8,6)$ | $0$ |
| $2$ | $4$ | $(1,2,7,3)(4,5,8,6)$ | $0$ |
| $2$ | $4$ | $(1,8,7,4)(2,6,3,5)$ | $0$ |
| $2$ | $4$ | $(1,6,7,5)(2,4,3,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.