Properties

Label 4.2e6_3e2_5e2_13e2.8t22.13
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$2433600= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 7 x^{6} - 10 x^{5} + 3 x^{4} + 20 x^{3} + 63 x^{2} + 110 x + 76 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 46 + 46\cdot 199 + 189\cdot 199^{2} + 111\cdot 199^{3} + 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 70 + 77\cdot 199 + 60\cdot 199^{2} + 150\cdot 199^{3} + 13\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 104\cdot 199 + 184\cdot 199^{2} + 128\cdot 199^{3} + 29\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 102 + 78\cdot 199 + 92\cdot 199^{2} + 80\cdot 199^{3} + 62\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 113 + 50\cdot 199 + 57\cdot 199^{2} + 38\cdot 199^{3} + 7\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 117 + 30\cdot 199 + 178\cdot 199^{2} + 178\cdot 199^{3} + 6\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 122 + 71\cdot 199 + 172\cdot 199^{2} + 68\cdot 199^{3} + 183\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 142 + 137\cdot 199 + 60\cdot 199^{2} + 38\cdot 199^{3} + 93\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,3)$
$(1,2)(3,7)(4,6)(5,8)$
$(1,7)(4,8)$
$(1,7)(5,6)$
$(1,8)(2,5)(3,6)(4,7)$
$(1,4)(2,5)(3,6)(7,8)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $-4$
$2$ $2$ $(1,7)(2,3)$ $0$
$2$ $2$ $(1,2)(3,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $0$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,5)(2,8)(3,4)(6,7)$ $0$
$2$ $2$ $(1,7)(4,8)$ $0$
$2$ $2$ $(2,3)(4,8)$ $0$
$2$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $0$
$2$ $4$ $(1,4,7,8)(2,6,3,5)$ $0$
$2$ $4$ $(1,5,7,6)(2,4,3,8)$ $0$
$2$ $4$ $(1,3,7,2)(4,5,8,6)$ $0$
$2$ $4$ $(1,2,7,3)(4,5,8,6)$ $0$
$2$ $4$ $(1,8,7,4)(2,6,3,5)$ $0$
$2$ $4$ $(1,6,7,5)(2,4,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.