Properties

Label 4.2e6_3e2_5e2_11e2.8t22.8
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$1742400= 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 9 x^{6} - 8 x^{5} + 31 x^{4} + 36 x^{3} - 23 x^{2} - 28 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 15\cdot 31 + 29\cdot 31^{2} + 9\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 26\cdot 31 + 26\cdot 31^{2} + 11\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 2\cdot 31 + 7\cdot 31^{2} + 24\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 5\cdot 31 + 5\cdot 31^{2} + 15\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 29\cdot 31 + 13\cdot 31^{2} + 28\cdot 31^{3} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 + 22\cdot 31 + 23\cdot 31^{2} + 11\cdot 31^{3} + 23\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 22 + 24\cdot 31 + 4\cdot 31^{2} + 25\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 29 + 28\cdot 31 + 12\cdot 31^{2} + 28\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(5,7)(6,8)$
$(3,4)(6,8)$
$(1,2)(6,8)$
$(1,6)(2,8)(3,5)(4,7)$
$(1,8)(2,6)(3,5)(4,7)$
$(1,5)(2,7)(3,6)(4,8)$
$(1,5)(2,7)(3,8)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,4)(5,7)(6,8)$ $-4$
$2$ $2$ $(1,2)(6,8)$ $0$
$2$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $0$
$2$ $2$ $(1,3)(2,4)(5,6)(7,8)$ $0$
$2$ $2$ $(3,4)(6,8)$ $0$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $0$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $4$ $(1,7,2,5)(3,6,4,8)$ $0$
$2$ $4$ $(1,4,2,3)(5,8,7,6)$ $0$
$2$ $4$ $(1,6,2,8)(3,7,4,5)$ $0$
$2$ $4$ $(1,8,2,6)(3,7,4,5)$ $0$
$2$ $4$ $(1,7,2,5)(3,8,4,6)$ $0$
$2$ $4$ $(1,4,2,3)(5,6,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.