Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 15\cdot 31 + 29\cdot 31^{2} + 9\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 26\cdot 31 + 26\cdot 31^{2} + 11\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 2\cdot 31 + 7\cdot 31^{2} + 24\cdot 31^{3} + 25\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 5\cdot 31 + 5\cdot 31^{2} + 15\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 29\cdot 31 + 13\cdot 31^{2} + 28\cdot 31^{3} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 + 22\cdot 31 + 23\cdot 31^{2} + 11\cdot 31^{3} + 23\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 22 + 24\cdot 31 + 4\cdot 31^{2} + 25\cdot 31^{3} + 10\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 29 + 28\cdot 31 + 12\cdot 31^{2} + 28\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(5,7)(6,8)$ |
| $(3,4)(6,8)$ |
| $(1,2)(6,8)$ |
| $(1,6)(2,8)(3,5)(4,7)$ |
| $(1,8)(2,6)(3,5)(4,7)$ |
| $(1,5)(2,7)(3,6)(4,8)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,2)(3,4)(5,7)(6,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,2)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,8)(3,5)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,6)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,6)(3,5)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(3,4)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,7)(3,8)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,8)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,5)(3,6,4,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)(5,8,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,2,8)(3,7,4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,8,2,6)(3,7,4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,2,5)(3,8,4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)(5,6,7,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.