Properties

Label 4.2e6_3e2_59e2.5t4.1
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 3^{2} \cdot 59^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$2005056= 2^{6} \cdot 3^{2} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - 2 x^{2} + 25 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 238 + 165\cdot 409 + 359\cdot 409^{2} + 111\cdot 409^{3} + 367\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 294 + 378\cdot 409 + 316\cdot 409^{2} + 407\cdot 409^{3} + 351\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 352 + 50\cdot 409 + 2\cdot 409^{2} + 255\cdot 409^{3} + 121\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 356 + 109\cdot 409 + 310\cdot 409^{2} + 341\cdot 409^{3} + 45\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 397 + 112\cdot 409 + 238\cdot 409^{2} + 110\cdot 409^{3} + 340\cdot 409^{4} +O\left(409^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.