Properties

Label 4.2e6_3e2_31e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$553536= 2^{6} \cdot 3^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 2 x^{3} - 4 x^{2} + 16 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 19 + \left(3 a + 2\right)\cdot 23 + \left(22 a + 20\right)\cdot 23^{2} + 13 a\cdot 23^{3} + \left(5 a + 22\right)\cdot 23^{4} + \left(12 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 13 + \left(19 a + 13\right)\cdot 23 + 14\cdot 23^{2} + \left(9 a + 6\right)\cdot 23^{3} + \left(17 a + 19\right)\cdot 23^{4} + \left(10 a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 19 + \left(6 a + 17\right)\cdot 23 + 7 a\cdot 23^{2} + \left(21 a + 14\right)\cdot 23^{3} + \left(5 a + 5\right)\cdot 23^{4} + \left(19 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 15 + 6\cdot 23 + 11\cdot 23^{2} + 15\cdot 23^{3} + 4\cdot 23^{4} + 8\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 6 + 10\cdot 23 + 13\cdot 23^{2} + 5\cdot 23^{3} + 21\cdot 23^{4} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 22 + \left(16 a + 17\right)\cdot 23 + \left(15 a + 8\right)\cdot 23^{2} + \left(a + 3\right)\cdot 23^{3} + \left(17 a + 19\right)\cdot 23^{4} + \left(3 a + 15\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(3,6,5)$
$(1,5,2,3,4,6)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$9$$2$$(2,4)(3,6)$$0$
$2$$3$$(1,2,4)(3,6,5)$$-2$
$2$$3$$(1,2,4)(3,5,6)$$-2$
$4$$3$$(1,2,4)$$1$
$6$$6$$(1,5,2,3,4,6)$$0$
$6$$6$$(1,5,2,6,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.