Properties

Label 4.2e6_3e2_23e2.8t26.8
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$304704= 2^{6} \cdot 3^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - x^{6} + 2 x^{5} + 5 x^{4} - 20 x^{3} + 26 x^{2} - 16 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 463 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 46 + 76\cdot 463 + 119\cdot 463^{2} + 143\cdot 463^{3} + 339\cdot 463^{4} + 328\cdot 463^{5} + 138\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 95 + 29\cdot 463 + 263\cdot 463^{2} + 365\cdot 463^{3} + 28\cdot 463^{4} + 356\cdot 463^{5} + 113\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 122 + 441\cdot 463 + 377\cdot 463^{2} + 389\cdot 463^{3} + 383\cdot 463^{4} + 43\cdot 463^{5} + 397\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 206 + 47\cdot 463 + 78\cdot 463^{2} + 65\cdot 463^{3} + 348\cdot 463^{4} + 336\cdot 463^{5} + 366\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 244 + 118\cdot 463 + 374\cdot 463^{2} + 162\cdot 463^{3} + 133\cdot 463^{4} + 450\cdot 463^{5} + 6\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 338 + 139\cdot 463 + 385\cdot 463^{2} + 254\cdot 463^{3} + 27\cdot 463^{4} + 383\cdot 463^{5} + 15\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 391 + 213\cdot 463 + 16\cdot 463^{2} + 22\cdot 463^{3} + 120\cdot 463^{4} + 313\cdot 463^{5} + 353\cdot 463^{6} +O\left(463^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 412 + 322\cdot 463 + 237\cdot 463^{2} + 448\cdot 463^{3} + 7\cdot 463^{4} + 103\cdot 463^{5} + 459\cdot 463^{6} +O\left(463^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,7)(5,6)$
$(1,2)(6,7)$
$(1,2)(4,5)$
$(1,5,2,4)(3,6,8,7)$
$(1,7,2,6)$
$(3,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,8)(4,5)(6,7)$ $-4$
$2$ $2$ $(1,2)(6,7)$ $0$
$4$ $2$ $(1,3)(2,8)(4,7)(5,6)$ $0$
$4$ $2$ $(3,8)(6,7)$ $0$
$4$ $2$ $(1,8)(2,3)(4,7)(5,6)$ $0$
$4$ $2$ $(1,7)(2,6)(3,5)(4,8)$ $0$
$8$ $2$ $(1,6)(2,7)(3,8)$ $0$
$2$ $4$ $(1,6,2,7)(3,5,8,4)$ $0$
$2$ $4$ $(1,7,2,6)(3,5,8,4)$ $0$
$4$ $4$ $(1,5,2,4)(3,6,8,7)$ $0$
$4$ $4$ $(1,8,2,3)(4,6,5,7)$ $0$
$4$ $4$ $(1,7,2,6)$ $2$
$4$ $4$ $(1,2)(3,4,8,5)(6,7)$ $-2$
$8$ $8$ $(1,4,7,8,2,5,6,3)$ $0$
$8$ $8$ $(1,4,6,8,2,5,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.