Properties

Label 4.2e6_3e2_17e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{6} \cdot 3^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$166464= 2^{6} \cdot 3^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 6 x^{3} + 7 x^{2} - 8 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 22\cdot 23 + 20\cdot 23^{2} + 4\cdot 23^{3} + 19\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 9 + \left(16 a + 4\right)\cdot 23 + \left(17 a + 3\right)\cdot 23^{2} + \left(7 a + 17\right)\cdot 23^{3} + \left(3 a + 21\right)\cdot 23^{4} + \left(18 a + 19\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 18 + \left(19 a + 5\right)\cdot 23 + \left(10 a + 13\right)\cdot 23^{2} + \left(2 a + 22\right)\cdot 23^{3} + \left(14 a + 15\right)\cdot 23^{4} + \left(14 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 18 + 9\cdot 23 + 17\cdot 23^{2} + 15\cdot 23^{3} + 14\cdot 23^{4} + 15\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 8 + \left(6 a + 3\right)\cdot 23 + \left(5 a + 22\right)\cdot 23^{2} + \left(15 a + 14\right)\cdot 23^{3} + \left(19 a + 20\right)\cdot 23^{4} + \left(4 a + 6\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ a + 16 + 3 a\cdot 23 + \left(12 a + 15\right)\cdot 23^{2} + \left(20 a + 16\right)\cdot 23^{3} + \left(8 a + 18\right)\cdot 23^{4} + \left(8 a + 22\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,4)$
$(1,6,2,4,5,3)$
$(1,2)(3,4)$
$(3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,4)(2,3)(5,6)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$9$$2$$(1,2)(3,4)$$0$
$2$$3$$(1,2,5)(3,6,4)$$-2$
$2$$3$$(1,2,5)(3,4,6)$$-2$
$4$$3$$(3,6,4)$$1$
$6$$6$$(1,6,2,4,5,3)$$0$
$6$$6$$(1,3,2,4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.