Properties

Label 4.2e6_3e2_13e3.8t21.4c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{6} \cdot 3^{2} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$1265472= 2^{6} \cdot 3^{2} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 8 x^{6} - 7 x^{4} - 12 x^{3} + 50 x^{2} + 80 x + 28 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 24 + 110\cdot 199 + 97\cdot 199^{2} + 76\cdot 199^{3} + 151\cdot 199^{4} + 141\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 34 + 179\cdot 199 + 9\cdot 199^{2} + 160\cdot 199^{3} + 29\cdot 199^{4} + 14\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 45 + 124\cdot 199 + 90\cdot 199^{2} + 26\cdot 199^{3} + 165\cdot 199^{4} + 162\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 58 + 70\cdot 199 + 19\cdot 199^{2} + 34\cdot 199^{3} + 157\cdot 199^{4} + 174\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 98 + 183\cdot 199 + 135\cdot 199^{3} + 51\cdot 199^{4} + 79\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 103 + 168\cdot 199 + 52\cdot 199^{2} + 148\cdot 199^{3} + 81\cdot 199^{4} + 14\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 116 + 35\cdot 199 + 178\cdot 199^{2} + 23\cdot 199^{3} + 18\cdot 199^{4} + 182\cdot 199^{5} +O\left(199^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 123 + 123\cdot 199 + 147\cdot 199^{2} + 191\cdot 199^{3} + 140\cdot 199^{4} + 26\cdot 199^{5} +O\left(199^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(4,6,8,7)$
$(4,8)(6,7)$
$(1,6,3,7)(2,8,5,4)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,5)(4,8)(6,7)$$-4$
$2$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(4,8)(6,7)$$0$
$4$$2$$(1,8)(2,6)(3,4)(5,7)$$0$
$4$$4$$(1,6,3,7)(2,8,5,4)$$0$
$4$$4$$(1,8,2,7)(3,4,5,6)$$0$
$4$$4$$(1,7,2,8)(3,6,5,4)$$0$
$4$$4$$(2,5)(4,6,8,7)$$0$
$4$$4$$(2,5)(4,7,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.