Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 449 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 107 + 396\cdot 449 + 197\cdot 449^{2} + 434\cdot 449^{3} + 397\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 133 + 215\cdot 449 + 174\cdot 449^{2} + 346\cdot 449^{3} + 332\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 140 + 24\cdot 449 + 378\cdot 449^{2} + 324\cdot 449^{3} + 233\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 190 + 17\cdot 449 + 398\cdot 449^{2} + 425\cdot 449^{3} + 262\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 329 + 244\cdot 449 + 198\cdot 449^{2} + 264\cdot 449^{3} + 119\cdot 449^{4} +O\left(449^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.