Properties

Label 4.2e6_37e2.8t40.1c1
Dimension 4
Group $Q_8:S_4$
Conductor $ 2^{6} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Q_8:S_4$
Conductor:$87616= 2^{6} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{5} - 4 x^{3} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8:S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 28.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 17 + \left(28 a + 17\right)\cdot 31 + \left(6 a + 7\right)\cdot 31^{2} + \left(23 a + 21\right)\cdot 31^{3} + \left(13 a + 11\right)\cdot 31^{4} + \left(4 a + 4\right)\cdot 31^{5} + \left(30 a + 14\right)\cdot 31^{6} + 17 a\cdot 31^{7} + \left(3 a + 3\right)\cdot 31^{8} + \left(5 a + 30\right)\cdot 31^{9} + \left(9 a + 11\right)\cdot 31^{10} + \left(14 a + 17\right)\cdot 31^{11} + \left(21 a + 27\right)\cdot 31^{12} + \left(4 a + 23\right)\cdot 31^{13} + \left(22 a + 11\right)\cdot 31^{14} + \left(25 a + 19\right)\cdot 31^{15} + \left(14 a + 28\right)\cdot 31^{16} + \left(27 a + 12\right)\cdot 31^{17} + \left(16 a + 4\right)\cdot 31^{18} + \left(8 a + 5\right)\cdot 31^{19} + \left(5 a + 9\right)\cdot 31^{20} + \left(21 a + 2\right)\cdot 31^{21} + \left(2 a + 10\right)\cdot 31^{22} + \left(17 a + 1\right)\cdot 31^{23} + \left(30 a + 5\right)\cdot 31^{24} + \left(20 a + 9\right)\cdot 31^{25} + \left(27 a + 17\right)\cdot 31^{26} + \left(6 a + 25\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 2 }$ $=$ $ 27 + 27\cdot 31 + 26\cdot 31^{2} + 23\cdot 31^{3} + 4\cdot 31^{4} + 18\cdot 31^{5} + 2\cdot 31^{6} + 18\cdot 31^{7} + 19\cdot 31^{8} + 10\cdot 31^{9} + 29\cdot 31^{10} + 22\cdot 31^{11} + 30\cdot 31^{12} + 4\cdot 31^{13} + 25\cdot 31^{14} + 30\cdot 31^{15} + 21\cdot 31^{17} + 4\cdot 31^{18} + 18\cdot 31^{19} + 6\cdot 31^{20} + 4\cdot 31^{21} + 13\cdot 31^{23} + 31^{25} + 10\cdot 31^{26} + 8\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 3 }$ $=$ $ 8 + 17\cdot 31 + 25\cdot 31^{2} + 3\cdot 31^{3} + 21\cdot 31^{4} + 8\cdot 31^{5} + 17\cdot 31^{6} + 20\cdot 31^{7} + 15\cdot 31^{8} + 6\cdot 31^{9} + 14\cdot 31^{10} + 6\cdot 31^{11} + 29\cdot 31^{12} + 24\cdot 31^{13} + 12\cdot 31^{14} + 5\cdot 31^{15} + 31^{16} + 22\cdot 31^{17} + 15\cdot 31^{18} + 13\cdot 31^{19} + 6\cdot 31^{20} + 12\cdot 31^{21} + 26\cdot 31^{22} + 17\cdot 31^{23} + 29\cdot 31^{24} + 8\cdot 31^{25} + 4\cdot 31^{26} + 28\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 6 + \left(2 a + 2\right)\cdot 31 + \left(24 a + 24\right)\cdot 31^{2} + \left(7 a + 29\right)\cdot 31^{3} + \left(17 a + 15\right)\cdot 31^{4} + \left(26 a + 30\right)\cdot 31^{5} + 7\cdot 31^{6} + \left(13 a + 6\right)\cdot 31^{7} + \left(27 a + 23\right)\cdot 31^{8} + \left(25 a + 5\right)\cdot 31^{9} + \left(21 a + 25\right)\cdot 31^{10} + \left(16 a + 5\right)\cdot 31^{11} + \left(9 a + 25\right)\cdot 31^{12} + \left(26 a + 11\right)\cdot 31^{13} + \left(8 a + 20\right)\cdot 31^{14} + \left(5 a + 17\right)\cdot 31^{15} + \left(16 a + 1\right)\cdot 31^{16} + \left(3 a + 22\right)\cdot 31^{17} + \left(14 a + 10\right)\cdot 31^{18} + \left(22 a + 5\right)\cdot 31^{19} + \left(25 a + 11\right)\cdot 31^{20} + \left(9 a + 8\right)\cdot 31^{21} + \left(28 a + 25\right)\cdot 31^{22} + \left(13 a + 1\right)\cdot 31^{23} + 18\cdot 31^{24} + \left(10 a + 20\right)\cdot 31^{25} + \left(3 a + 20\right)\cdot 31^{26} + \left(24 a + 11\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 8 + \left(a + 12\right)\cdot 31 + \left(27 a + 19\right)\cdot 31^{2} + \left(26 a + 20\right)\cdot 31^{3} + \left(6 a + 23\right)\cdot 31^{4} + \left(6 a + 9\right)\cdot 31^{5} + \left(9 a + 25\right)\cdot 31^{6} + \left(11 a + 28\right)\cdot 31^{7} + \left(27 a + 16\right)\cdot 31^{8} + \left(17 a + 3\right)\cdot 31^{9} + \left(18 a + 29\right)\cdot 31^{10} + \left(5 a + 24\right)\cdot 31^{11} + 25\cdot 31^{12} + \left(14 a + 27\right)\cdot 31^{13} + \left(a + 1\right)\cdot 31^{14} + \left(21 a + 21\right)\cdot 31^{15} + \left(a + 14\right)\cdot 31^{16} + \left(13 a + 6\right)\cdot 31^{17} + \left(13 a + 19\right)\cdot 31^{18} + \left(15 a + 3\right)\cdot 31^{19} + 4\cdot 31^{20} + \left(8 a + 2\right)\cdot 31^{21} + \left(23 a + 27\right)\cdot 31^{22} + \left(5 a + 20\right)\cdot 31^{23} + \left(22 a + 13\right)\cdot 31^{24} + \left(18 a + 21\right)\cdot 31^{25} + \left(28 a + 27\right)\cdot 31^{26} + \left(21 a + 23\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 30 + \left(14 a + 14\right)\cdot 31 + \left(17 a + 10\right)\cdot 31^{2} + \left(16 a + 27\right)\cdot 31^{3} + \left(11 a + 14\right)\cdot 31^{4} + \left(4 a + 4\right)\cdot 31^{5} + \left(20 a + 7\right)\cdot 31^{6} + \left(2 a + 11\right)\cdot 31^{7} + \left(12 a + 28\right)\cdot 31^{8} + \left(19 a + 29\right)\cdot 31^{9} + \left(28 a + 25\right)\cdot 31^{10} + \left(14 a + 13\right)\cdot 31^{11} + \left(10 a + 10\right)\cdot 31^{12} + \left(5 a + 18\right)\cdot 31^{13} + \left(28 a + 20\right)\cdot 31^{14} + \left(24 a + 19\right)\cdot 31^{15} + \left(5 a + 15\right)\cdot 31^{16} + \left(14 a + 8\right)\cdot 31^{17} + 9\cdot 31^{18} + \left(26 a + 18\right)\cdot 31^{19} + \left(19 a + 10\right)\cdot 31^{20} + \left(16 a + 16\right)\cdot 31^{21} + \left(3 a + 20\right)\cdot 31^{22} + \left(11 a + 20\right)\cdot 31^{23} + \left(28 a + 10\right)\cdot 31^{24} + \left(21 a + 5\right)\cdot 31^{25} + \left(3 a + 27\right)\cdot 31^{26} + \left(11 a + 30\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 7 }$ $=$ $ 9 a + 21 + \left(29 a + 24\right)\cdot 31 + \left(3 a + 9\right)\cdot 31^{2} + \left(4 a + 16\right)\cdot 31^{3} + \left(24 a + 10\right)\cdot 31^{4} + \left(24 a + 15\right)\cdot 31^{5} + \left(21 a + 6\right)\cdot 31^{6} + \left(19 a + 11\right)\cdot 31^{7} + \left(3 a + 29\right)\cdot 31^{8} + \left(13 a + 11\right)\cdot 31^{9} + \left(12 a + 17\right)\cdot 31^{10} + \left(25 a + 17\right)\cdot 31^{11} + \left(30 a + 20\right)\cdot 31^{12} + \left(16 a + 24\right)\cdot 31^{13} + \left(29 a + 21\right)\cdot 31^{14} + \left(9 a + 30\right)\cdot 31^{15} + \left(29 a + 27\right)\cdot 31^{16} + \left(17 a + 30\right)\cdot 31^{17} + \left(17 a + 1\right)\cdot 31^{18} + \left(15 a + 21\right)\cdot 31^{19} + \left(30 a + 20\right)\cdot 31^{20} + \left(22 a + 17\right)\cdot 31^{21} + \left(7 a + 3\right)\cdot 31^{22} + \left(25 a + 9\right)\cdot 31^{23} + \left(8 a + 21\right)\cdot 31^{24} + \left(12 a + 5\right)\cdot 31^{25} + \left(2 a + 4\right)\cdot 31^{26} + \left(9 a + 8\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$
$r_{ 8 }$ $=$ $ 26 a + 9 + \left(16 a + 7\right)\cdot 31 + 13 a\cdot 31^{2} + \left(14 a + 12\right)\cdot 31^{3} + \left(19 a + 21\right)\cdot 31^{4} + \left(26 a + 1\right)\cdot 31^{5} + \left(10 a + 12\right)\cdot 31^{6} + \left(28 a + 27\right)\cdot 31^{7} + \left(18 a + 18\right)\cdot 31^{8} + \left(11 a + 25\right)\cdot 31^{9} + \left(2 a + 1\right)\cdot 31^{10} + \left(16 a + 15\right)\cdot 31^{11} + \left(20 a + 16\right)\cdot 31^{12} + \left(25 a + 18\right)\cdot 31^{13} + \left(2 a + 9\right)\cdot 31^{14} + \left(6 a + 10\right)\cdot 31^{15} + \left(25 a + 2\right)\cdot 31^{16} + 16 a\cdot 31^{17} + \left(30 a + 27\right)\cdot 31^{18} + \left(4 a + 7\right)\cdot 31^{19} + \left(11 a + 24\right)\cdot 31^{20} + \left(14 a + 29\right)\cdot 31^{21} + \left(27 a + 10\right)\cdot 31^{22} + \left(19 a + 8\right)\cdot 31^{23} + \left(2 a + 25\right)\cdot 31^{24} + \left(9 a + 20\right)\cdot 31^{25} + \left(27 a + 12\right)\cdot 31^{26} + \left(19 a + 18\right)\cdot 31^{27} +O\left(31^{ 28 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,2)(5,6,8,7)$
$(2,8,6)(3,5,7)$
$(1,5,4,8)(2,6,3,7)$
$(5,8)(6,7)$
$(1,3,6,8,4,2,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-4$
$6$$2$$(2,3)(6,7)$$0$
$12$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$24$$2$$(2,7)(3,6)(5,8)$$0$
$32$$3$$(1,7,8)(4,6,5)$$1$
$6$$4$$(1,5,4,8)(2,6,3,7)$$0$
$6$$4$$(1,8,4,5)(2,6,3,7)$$0$
$12$$4$$(2,7,3,6)$$2$
$12$$4$$(1,8,4,5)(2,3)(6,7)$$-2$
$32$$6$$(1,8,2,4,5,3)(6,7)$$-1$
$24$$8$$(1,3,8,7,4,2,5,6)$$0$
$24$$8$$(1,7,3,5,4,6,2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.