Properties

Label 4.2e6_367.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 367 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$23488= 2^{6} \cdot 367 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 3 x^{4} + 17 x^{3} - 9 x^{2} - 26 x + 134 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.367.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 18\cdot 23 + 20\cdot 23^{2} + 5\cdot 23^{3} + 15\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 14\cdot 23 + 22\cdot 23^{2} + 5\cdot 23^{3} + 11\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 19 + \left(22 a + 7\right)\cdot 23 + \left(21 a + 12\right)\cdot 23^{2} + \left(21 a + 20\right)\cdot 23^{3} + \left(17 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 19 + \left(11 a + 20\right)\cdot 23 + \left(6 a + 11\right)\cdot 23^{2} + \left(22 a + 12\right)\cdot 23^{3} + \left(3 a + 22\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 1 + \left(11 a + 7\right)\cdot 23 + \left(16 a + 13\right)\cdot 23^{2} + 4\cdot 23^{3} + \left(19 a + 8\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 8 + \left(a + 11\right)\cdot 23^{2} + \left(a + 19\right)\cdot 23^{3} + \left(5 a + 12\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,4)$
$(1,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(1,4,5)(2,3,6)$$1$
$4$$3$$(2,3,6)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,2,4,3,5,6)$$-1$
$12$$6$$(1,4,5)(2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.