Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 25 + \left(11 a + 20\right)\cdot 29 + \left(16 a + 25\right)\cdot 29^{2} + \left(7 a + 5\right)\cdot 29^{3} + \left(23 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 5 + \left(9 a + 13\right)\cdot 29 + \left(28 a + 2\right)\cdot 29^{2} + \left(22 a + 14\right)\cdot 29^{3} + \left(25 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 20 a + 12 + \left(17 a + 10\right)\cdot 29 + \left(12 a + 9\right)\cdot 29^{2} + \left(21 a + 27\right)\cdot 29^{3} + \left(5 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 21\cdot 29 + 7\cdot 29^{2} + 29^{3} + 12\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 22 + 26\cdot 29 + 22\cdot 29^{2} + 24\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 22 a + 11 + \left(19 a + 23\right)\cdot 29 + 18\cdot 29^{2} + \left(6 a + 13\right)\cdot 29^{3} + \left(3 a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3,5)$ |
| $(1,2)(3,4)(5,6)$ |
| $(1,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $6$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $6$ | $2$ | $(3,5)$ | $-2$ |
| $9$ | $2$ | $(3,5)(4,6)$ | $0$ |
| $4$ | $3$ | $(1,3,5)$ | $1$ |
| $4$ | $3$ | $(1,3,5)(2,4,6)$ | $-2$ |
| $18$ | $4$ | $(1,2)(3,6,5,4)$ | $0$ |
| $12$ | $6$ | $(1,4,3,6,5,2)$ | $0$ |
| $12$ | $6$ | $(2,4,6)(3,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.