Properties

Label 4.2e6_31e2.8t40.2c1
Dimension 4
Group $Q_8:S_4$
Conductor $ 2^{6} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Q_8:S_4$
Conductor:$61504= 2^{6} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 4 x^{5} + x^{4} + 6 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8:S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 29\cdot 53 + 21\cdot 53^{2} + 22\cdot 53^{3} + 41\cdot 53^{4} + 7\cdot 53^{5} + 50\cdot 53^{6} + 50\cdot 53^{7} + 48\cdot 53^{8} + 21\cdot 53^{9} + 51\cdot 53^{10} + 38\cdot 53^{11} + 52\cdot 53^{12} + 37\cdot 53^{13} + 12\cdot 53^{14} + 28\cdot 53^{15} + 33\cdot 53^{16} + 18\cdot 53^{17} + 35\cdot 53^{18} + 6\cdot 53^{19} + 26\cdot 53^{20} + 21\cdot 53^{21} + 53^{23} + 25\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 26 + \left(29 a + 28\right)\cdot 53 + \left(41 a + 43\right)\cdot 53^{2} + \left(43 a + 17\right)\cdot 53^{3} + \left(51 a + 15\right)\cdot 53^{4} + \left(35 a + 43\right)\cdot 53^{5} + \left(45 a + 6\right)\cdot 53^{6} + \left(2 a + 6\right)\cdot 53^{7} + \left(48 a + 2\right)\cdot 53^{8} + \left(23 a + 50\right)\cdot 53^{9} + \left(16 a + 42\right)\cdot 53^{10} + \left(4 a + 30\right)\cdot 53^{11} + \left(9 a + 38\right)\cdot 53^{12} + \left(46 a + 14\right)\cdot 53^{13} + \left(a + 3\right)\cdot 53^{14} + \left(23 a + 47\right)\cdot 53^{15} + \left(26 a + 41\right)\cdot 53^{16} + \left(33 a + 37\right)\cdot 53^{17} + \left(41 a + 34\right)\cdot 53^{18} + \left(23 a + 51\right)\cdot 53^{19} + \left(3 a + 44\right)\cdot 53^{20} + \left(8 a + 36\right)\cdot 53^{21} + \left(34 a + 3\right)\cdot 53^{22} + \left(30 a + 13\right)\cdot 53^{23} + \left(26 a + 24\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 34 + \left(28 a + 16\right)\cdot 53 + \left(26 a + 23\right)\cdot 53^{2} + \left(31 a + 10\right)\cdot 53^{3} + \left(36 a + 46\right)\cdot 53^{4} + \left(29 a + 41\right)\cdot 53^{5} + \left(21 a + 21\right)\cdot 53^{6} + \left(43 a + 18\right)\cdot 53^{7} + \left(51 a + 30\right)\cdot 53^{8} + 42 a\cdot 53^{9} + \left(28 a + 37\right)\cdot 53^{10} + \left(39 a + 12\right)\cdot 53^{11} + \left(39 a + 51\right)\cdot 53^{12} + \left(a + 35\right)\cdot 53^{13} + \left(41 a + 48\right)\cdot 53^{14} + \left(22 a + 3\right)\cdot 53^{15} + 50 a\cdot 53^{16} + \left(37 a + 50\right)\cdot 53^{17} + \left(22 a + 7\right)\cdot 53^{18} + \left(52 a + 44\right)\cdot 53^{19} + \left(7 a + 49\right)\cdot 53^{20} + \left(31 a + 46\right)\cdot 53^{21} + \left(36 a + 10\right)\cdot 53^{22} + \left(45 a + 26\right)\cdot 53^{23} + \left(24 a + 21\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 30 + \left(39 a + 48\right)\cdot 53 + \left(51 a + 27\right)\cdot 53^{2} + \left(45 a + 46\right)\cdot 53^{3} + \left(11 a + 26\right)\cdot 53^{4} + \left(12 a + 24\right)\cdot 53^{5} + \left(8 a + 26\right)\cdot 53^{6} + \left(51 a + 38\right)\cdot 53^{7} + \left(25 a + 26\right)\cdot 53^{8} + \left(28 a + 43\right)\cdot 53^{9} + \left(41 a + 18\right)\cdot 53^{10} + 39\cdot 53^{11} + \left(7 a + 28\right)\cdot 53^{12} + \left(41 a + 1\right)\cdot 53^{13} + \left(25 a + 21\right)\cdot 53^{14} + \left(12 a + 18\right)\cdot 53^{15} + \left(12 a + 2\right)\cdot 53^{16} + \left(4 a + 5\right)\cdot 53^{17} + \left(9 a + 20\right)\cdot 53^{18} + \left(32 a + 19\right)\cdot 53^{19} + \left(6 a + 26\right)\cdot 53^{20} + \left(28 a + 47\right)\cdot 53^{21} + \left(43 a + 15\right)\cdot 53^{22} + \left(6 a + 36\right)\cdot 53^{23} + \left(11 a + 25\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 5 }$ $=$ $ 42 + 43\cdot 53^{2} + 45\cdot 53^{3} + 31\cdot 53^{4} + 38\cdot 53^{5} + 39\cdot 53^{6} + 38\cdot 53^{7} + 9\cdot 53^{8} + 11\cdot 53^{9} + 29\cdot 53^{10} + 21\cdot 53^{11} + 8\cdot 53^{12} + 34\cdot 53^{13} + 26\cdot 53^{14} + 39\cdot 53^{15} + 3\cdot 53^{16} + 6\cdot 53^{17} + 45\cdot 53^{18} + 38\cdot 53^{19} + 32\cdot 53^{20} + 47\cdot 53^{21} + 25\cdot 53^{22} + 36\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 9 + \left(23 a + 30\right)\cdot 53 + \left(11 a + 21\right)\cdot 53^{2} + \left(9 a + 45\right)\cdot 53^{3} + \left(a + 19\right)\cdot 53^{4} + \left(17 a + 29\right)\cdot 53^{5} + \left(7 a + 47\right)\cdot 53^{6} + \left(50 a + 24\right)\cdot 53^{7} + \left(4 a + 32\right)\cdot 53^{8} + \left(29 a + 44\right)\cdot 53^{9} + \left(36 a + 31\right)\cdot 53^{10} + \left(48 a + 31\right)\cdot 53^{11} + \left(43 a + 17\right)\cdot 53^{12} + \left(6 a + 31\right)\cdot 53^{13} + \left(51 a + 17\right)\cdot 53^{14} + \left(29 a + 31\right)\cdot 53^{15} + \left(26 a + 18\right)\cdot 53^{16} + \left(19 a + 39\right)\cdot 53^{17} + \left(11 a + 8\right)\cdot 53^{18} + \left(29 a + 52\right)\cdot 53^{19} + \left(49 a + 34\right)\cdot 53^{20} + \left(44 a + 12\right)\cdot 53^{21} + \left(18 a + 26\right)\cdot 53^{22} + \left(22 a + 48\right)\cdot 53^{23} + \left(26 a + 46\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 7 }$ $=$ $ 26 a + 36 + \left(24 a + 50\right)\cdot 53 + \left(26 a + 47\right)\cdot 53^{2} + \left(21 a + 3\right)\cdot 53^{3} + \left(16 a + 2\right)\cdot 53^{4} + \left(23 a + 18\right)\cdot 53^{5} + \left(31 a + 25\right)\cdot 53^{6} + \left(9 a + 11\right)\cdot 53^{7} + \left(a + 35\right)\cdot 53^{8} + \left(10 a + 14\right)\cdot 53^{9} + \left(24 a + 3\right)\cdot 53^{10} + \left(13 a + 36\right)\cdot 53^{11} + \left(13 a + 11\right)\cdot 53^{12} + \left(51 a + 3\right)\cdot 53^{13} + \left(11 a + 52\right)\cdot 53^{14} + 30 a\cdot 53^{15} + \left(2 a + 20\right)\cdot 53^{16} + \left(15 a + 45\right)\cdot 53^{17} + \left(30 a + 7\right)\cdot 53^{18} + 19\cdot 53^{19} + \left(45 a + 29\right)\cdot 53^{20} + \left(21 a + 4\right)\cdot 53^{21} + \left(16 a + 20\right)\cdot 53^{22} + \left(7 a + 13\right)\cdot 53^{23} + \left(28 a + 22\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$
$r_{ 8 }$ $=$ $ 12 a + 35 + \left(13 a + 7\right)\cdot 53 + \left(a + 36\right)\cdot 53^{2} + \left(7 a + 19\right)\cdot 53^{3} + \left(41 a + 28\right)\cdot 53^{4} + \left(40 a + 8\right)\cdot 53^{5} + \left(44 a + 47\right)\cdot 53^{6} + \left(a + 22\right)\cdot 53^{7} + \left(27 a + 26\right)\cdot 53^{8} + \left(24 a + 25\right)\cdot 53^{9} + \left(11 a + 50\right)\cdot 53^{10} + 52 a\cdot 53^{11} + \left(45 a + 3\right)\cdot 53^{12} + 11 a\cdot 53^{13} + \left(27 a + 30\right)\cdot 53^{14} + \left(40 a + 42\right)\cdot 53^{15} + \left(40 a + 38\right)\cdot 53^{16} + \left(48 a + 9\right)\cdot 53^{17} + \left(43 a + 52\right)\cdot 53^{18} + \left(20 a + 32\right)\cdot 53^{19} + \left(46 a + 20\right)\cdot 53^{20} + \left(24 a + 47\right)\cdot 53^{21} + \left(9 a + 2\right)\cdot 53^{22} + \left(46 a + 20\right)\cdot 53^{23} + \left(41 a + 10\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,7,5,4,8,3)$
$(2,7,6)(3,8,4)$
$(1,8,2)(4,5,6)$
$(2,8,3)(4,6,7)$
$(3,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,4)(3,7)(6,8)$$-4$
$6$$2$$(3,7)(6,8)$$0$
$12$$2$$(1,6)(2,7)(3,4)(5,8)$$0$
$24$$2$$(1,3)(5,7)(6,8)$$0$
$32$$3$$(2,7,6)(3,8,4)$$1$
$6$$4$$(1,6,5,8)(2,7,4,3)$$0$
$6$$4$$(1,6,5,8)(2,3,4,7)$$0$
$12$$4$$(1,7,5,3)$$2$
$12$$4$$(1,7,5,3)(2,4)(6,8)$$-2$
$32$$6$$(1,6,4,5,8,2)(3,7)$$-1$
$24$$8$$(1,2,6,7,5,4,8,3)$$0$
$24$$8$$(1,2,6,3,5,4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.