Properties

Label 4.2e6_281e3.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 281^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1420034624= 2^{6} \cdot 281^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 17 x^{3} + x^{2} + 17 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.281.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 17 + 15\cdot 17^{3} + 10\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 12 + \left(13 a + 7\right)\cdot 17 + \left(12 a + 3\right)\cdot 17^{2} + \left(14 a + 14\right)\cdot 17^{3} + \left(5 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 8 + \left(3 a + 8\right)\cdot 17 + \left(4 a + 2\right)\cdot 17^{2} + \left(2 a + 16\right)\cdot 17^{3} + \left(11 a + 1\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 11\cdot 17^{2} + 3\cdot 17^{3} + 4\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 5 + \left(15 a + 2\right)\cdot 17 + \left(10 a + 2\right)\cdot 17^{2} + \left(13 a + 8\right)\cdot 17^{3} + \left(2 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 9 + \left(a + 13\right)\cdot 17 + \left(6 a + 14\right)\cdot 17^{2} + \left(3 a + 10\right)\cdot 17^{3} + \left(14 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$-2$
$6$$2$$(3,4)$$0$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,5,6)$$-2$
$4$$3$$(1,5,6)(2,3,4)$$1$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,3,5,4,6,2)$$1$
$12$$6$$(1,5,6)(3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.