Properties

Label 4.2e6_19_47e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 19 \cdot 47^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2686144= 2^{6} \cdot 19 \cdot 47^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} - 5 x^{3} + 12 x^{2} - 7 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8\cdot 11 + 10\cdot 11^{2} + 4\cdot 11^{3} + 10\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 8 + \left(3 a + 9\right)\cdot 11 + \left(4 a + 10\right)\cdot 11^{2} + \left(9 a + 5\right)\cdot 11^{3} + \left(4 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 11 + 9\cdot 11^{2} + 6\cdot 11^{3} + 6\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 5 + \left(3 a + 2\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(4 a + 8\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 9 + \left(7 a + 8\right)\cdot 11 + \left(6 a + 2\right)\cdot 11^{2} + \left(a + 6\right)\cdot 11^{3} + \left(6 a + 9\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 9 + \left(7 a + 2\right)\cdot 11 + \left(8 a + 8\right)\cdot 11^{2} + 6 a\cdot 11^{3} + \left(6 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$4$ $3$ $(2,3,5)$ $-2$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,6,5)$ $-1$
$12$ $6$ $(1,4,6)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.