Properties

Label 4.2e6_193e2.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 193^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2383936= 2^{6} \cdot 193^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{4} + 22 x^{3} - 41 x^{2} + 38 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 62 a + 71 + \left(13 a + 53\right)\cdot 97 + \left(63 a + 5\right)\cdot 97^{2} + \left(27 a + 78\right)\cdot 97^{3} + \left(25 a + 1\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 63 + 17\cdot 97 + 61\cdot 97^{2} + 16\cdot 97^{3} + 76\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 55 + \left(38 a + 31\right)\cdot 97 + \left(79 a + 94\right)\cdot 97^{2} + \left(23 a + 67\right)\cdot 97^{3} + \left(82 a + 29\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 a + 36 + \left(83 a + 5\right)\cdot 97 + \left(33 a + 55\right)\cdot 97^{2} + \left(69 a + 42\right)\cdot 97^{3} + \left(71 a + 96\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 a + 77 + \left(58 a + 47\right)\cdot 97 + \left(17 a + 38\right)\cdot 97^{2} + \left(73 a + 12\right)\cdot 97^{3} + \left(14 a + 88\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 88 + 37\cdot 97 + 36\cdot 97^{2} + 73\cdot 97^{3} + 95\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$-2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,4,6)(2,3,5)$$-2$
$4$$3$$(1,4,6)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,3,4,5,6,2)$$0$
$12$$6$$(1,4,6)(3,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.