Properties

Label 4.2e6_17e3.8t30.8
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{6} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$314432= 2^{6} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} - 4 x^{5} + 4 x^{4} + 4 x^{3} + x^{2} - 6 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 29 + 26\cdot 409 + 69\cdot 409^{2} + 95\cdot 409^{3} + 29\cdot 409^{4} + 274\cdot 409^{5} + 89\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 32 + 155\cdot 409 + 254\cdot 409^{2} + 300\cdot 409^{3} + 59\cdot 409^{4} + 33\cdot 409^{5} + 207\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 140 + 106\cdot 409 + 284\cdot 409^{2} + 103\cdot 409^{3} + 397\cdot 409^{4} + 256\cdot 409^{5} + 248\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 165 + 96\cdot 409 + 23\cdot 409^{2} + 312\cdot 409^{3} + 226\cdot 409^{4} + 123\cdot 409^{5} + 58\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 183 + 131\cdot 409 + 62\cdot 409^{2} + 110\cdot 409^{3} + 93\cdot 409^{4} + 387\cdot 409^{5} + 53\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 301 + 381\cdot 409 + 371\cdot 409^{2} + 276\cdot 409^{3} + 285\cdot 409^{4} + 356\cdot 409^{5} + 189\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 385 + 256\cdot 409 + 84\cdot 409^{2} + 259\cdot 409^{3} + 46\cdot 409^{4} + 381\cdot 409^{5} + 159\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 401 + 72\cdot 409 + 77\cdot 409^{2} + 178\cdot 409^{3} + 88\cdot 409^{4} + 232\cdot 409^{5} + 219\cdot 409^{6} +O\left(409^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(6,8)$
$(4,5)(6,8)$
$(1,8,5,3)(2,6,4,7)$
$(1,3,2,7)(4,6)(5,8)$
$(1,2)(3,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $-4$
$2$ $2$ $(3,7)(6,8)$ $0$
$4$ $2$ $(1,5)(2,4)(3,8)(6,7)$ $0$
$4$ $2$ $(1,2)(3,7)$ $0$
$8$ $2$ $(1,2)(3,6)(7,8)$ $0$
$4$ $4$ $(3,6,7,8)$ $2$
$4$ $4$ $(1,4,2,5)(3,8,7,6)$ $0$
$4$ $4$ $(1,5,2,4)(3,7)(6,8)$ $-2$
$8$ $4$ $(1,8,5,3)(2,6,4,7)$ $0$
$8$ $4$ $(1,3,5,8)(2,7,4,6)$ $0$
$8$ $4$ $(1,3,2,7)(4,6)(5,8)$ $0$
$8$ $4$ $(1,7,2,3)(4,6)(5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.