Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 409 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 29 + 26\cdot 409 + 69\cdot 409^{2} + 95\cdot 409^{3} + 29\cdot 409^{4} + 274\cdot 409^{5} + 89\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 155\cdot 409 + 254\cdot 409^{2} + 300\cdot 409^{3} + 59\cdot 409^{4} + 33\cdot 409^{5} + 207\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 140 + 106\cdot 409 + 284\cdot 409^{2} + 103\cdot 409^{3} + 397\cdot 409^{4} + 256\cdot 409^{5} + 248\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 165 + 96\cdot 409 + 23\cdot 409^{2} + 312\cdot 409^{3} + 226\cdot 409^{4} + 123\cdot 409^{5} + 58\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 183 + 131\cdot 409 + 62\cdot 409^{2} + 110\cdot 409^{3} + 93\cdot 409^{4} + 387\cdot 409^{5} + 53\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 301 + 381\cdot 409 + 371\cdot 409^{2} + 276\cdot 409^{3} + 285\cdot 409^{4} + 356\cdot 409^{5} + 189\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 385 + 256\cdot 409 + 84\cdot 409^{2} + 259\cdot 409^{3} + 46\cdot 409^{4} + 381\cdot 409^{5} + 159\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 401 + 72\cdot 409 + 77\cdot 409^{2} + 178\cdot 409^{3} + 88\cdot 409^{4} + 232\cdot 409^{5} + 219\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(6,8)$ |
| $(4,5)(6,8)$ |
| $(1,8,5,3)(2,6,4,7)$ |
| $(1,3,2,7)(4,6)(5,8)$ |
| $(1,2)(3,7)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,7)(4,5)(6,8)$ | $-4$ |
| $2$ | $2$ | $(3,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,4)(3,8)(6,7)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,7)$ | $0$ |
| $8$ | $2$ | $(1,2)(3,6)(7,8)$ | $0$ |
| $4$ | $4$ | $(3,6,7,8)$ | $-2$ |
| $4$ | $4$ | $(1,4,2,5)(3,8,7,6)$ | $0$ |
| $4$ | $4$ | $(1,5,2,4)(3,7)(6,8)$ | $2$ |
| $8$ | $4$ | $(1,8,5,3)(2,6,4,7)$ | $0$ |
| $8$ | $4$ | $(1,3,5,8)(2,7,4,6)$ | $0$ |
| $8$ | $4$ | $(1,3,2,7)(4,6)(5,8)$ | $0$ |
| $8$ | $4$ | $(1,7,2,3)(4,6)(5,8)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.