Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 409 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 94\cdot 409 + 402\cdot 409^{2} + 373\cdot 409^{3} + 167\cdot 409^{4} + 50\cdot 409^{5} + 47\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 137 + 75\cdot 409 + 37\cdot 409^{2} + 281\cdot 409^{3} + 125\cdot 409^{4} + 292\cdot 409^{5} + 181\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 151 + 334\cdot 409 + 9\cdot 409^{2} + 45\cdot 409^{3} + 311\cdot 409^{4} + 305\cdot 409^{5} + 255\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 309 + 127\cdot 409 + 148\cdot 409^{2} + 206\cdot 409^{3} + 311\cdot 409^{4} + 301\cdot 409^{5} + 8\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 329 + 261\cdot 409 + 257\cdot 409^{2} + 192\cdot 409^{3} + 27\cdot 409^{4} + 160\cdot 409^{5} + 97\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 335 + 123\cdot 409 + 337\cdot 409^{2} + 291\cdot 409^{3} + 34\cdot 409^{4} + 289\cdot 409^{5} + 62\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 350 + 69\cdot 409 + 222\cdot 409^{2} + 197\cdot 409^{3} + 194\cdot 409^{4} + 257\cdot 409^{5} + 188\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 407 + 139\cdot 409 + 221\cdot 409^{2} + 47\cdot 409^{3} + 54\cdot 409^{4} + 388\cdot 409^{5} + 384\cdot 409^{6} +O\left(409^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,3)(4,6,5,7)$ |
| $(1,7,5,2)(3,6,4,8)$ |
| $(1,4)(2,7)(3,5)(6,8)$ |
| $(1,3)(6,7)$ |
| $(2,8)(4,5)$ |
| $(1,3)(4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,8)(4,5)(6,7)$ |
$-4$ |
| $2$ |
$2$ |
$(2,8)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(4,5)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,7)(3,4)(6,8)$ |
$0$ |
| $8$ |
$2$ |
$(1,3)(2,6)(7,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,3,4)(2,7,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(2,6,8,7)$ |
$2$ |
| $4$ |
$4$ |
$(1,3)(2,6,8,7)(4,5)$ |
$-2$ |
| $8$ |
$4$ |
$(1,8)(2,3)(4,6,5,7)$ |
$0$ |
| $8$ |
$4$ |
$(1,8)(2,3)(4,7,5,6)$ |
$0$ |
| $8$ |
$4$ |
$(1,7,5,2)(3,6,4,8)$ |
$0$ |
| $8$ |
$4$ |
$(1,2,5,7)(3,8,4,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.