Properties

Label 4.2e6_17e3.8t30.6
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{6} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$314432= 2^{6} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 9 x^{6} - 12 x^{5} + 7 x^{4} + 10 x^{3} - 22 x^{2} + 16 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 31 + 94\cdot 409 + 402\cdot 409^{2} + 373\cdot 409^{3} + 167\cdot 409^{4} + 50\cdot 409^{5} + 47\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 137 + 75\cdot 409 + 37\cdot 409^{2} + 281\cdot 409^{3} + 125\cdot 409^{4} + 292\cdot 409^{5} + 181\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 151 + 334\cdot 409 + 9\cdot 409^{2} + 45\cdot 409^{3} + 311\cdot 409^{4} + 305\cdot 409^{5} + 255\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 309 + 127\cdot 409 + 148\cdot 409^{2} + 206\cdot 409^{3} + 311\cdot 409^{4} + 301\cdot 409^{5} + 8\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 329 + 261\cdot 409 + 257\cdot 409^{2} + 192\cdot 409^{3} + 27\cdot 409^{4} + 160\cdot 409^{5} + 97\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 335 + 123\cdot 409 + 337\cdot 409^{2} + 291\cdot 409^{3} + 34\cdot 409^{4} + 289\cdot 409^{5} + 62\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 350 + 69\cdot 409 + 222\cdot 409^{2} + 197\cdot 409^{3} + 194\cdot 409^{4} + 257\cdot 409^{5} + 188\cdot 409^{6} +O\left(409^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 407 + 139\cdot 409 + 221\cdot 409^{2} + 47\cdot 409^{3} + 54\cdot 409^{4} + 388\cdot 409^{5} + 384\cdot 409^{6} +O\left(409^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,3)(4,6,5,7)$
$(1,7,5,2)(3,6,4,8)$
$(1,4)(2,7)(3,5)(6,8)$
$(1,3)(6,7)$
$(2,8)(4,5)$
$(1,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $-4$
$2$ $2$ $(2,8)(6,7)$ $0$
$4$ $2$ $(4,5)(6,7)$ $0$
$4$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $0$
$8$ $2$ $(1,3)(2,6)(7,8)$ $0$
$4$ $4$ $(1,5,3,4)(2,7,8,6)$ $0$
$4$ $4$ $(2,6,8,7)$ $2$
$4$ $4$ $(1,3)(2,6,8,7)(4,5)$ $-2$
$8$ $4$ $(1,8)(2,3)(4,6,5,7)$ $0$
$8$ $4$ $(1,8)(2,3)(4,7,5,6)$ $0$
$8$ $4$ $(1,7,5,2)(3,6,4,8)$ $0$
$8$ $4$ $(1,2,5,7)(3,8,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.