Properties

Label 4.2e6_17e3.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$314432= 2^{6} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 2 x^{3} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 94 + \left(71 a + 54\right)\cdot 103 + \left(4 a + 74\right)\cdot 103^{2} + \left(63 a + 24\right)\cdot 103^{3} + \left(37 a + 19\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 81\cdot 103 + 57\cdot 103^{2} + 24\cdot 103^{3} + 57\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 28\cdot 103 + 20\cdot 103^{2} + 98\cdot 103^{3} + 89\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 43 + \left(75 a + 50\right)\cdot 103 + \left(92 a + 65\right)\cdot 103^{2} + \left(93 a + 38\right)\cdot 103^{3} + \left(38 a + 50\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 100 a + 97 + \left(31 a + 19\right)\cdot 103 + \left(98 a + 8\right)\cdot 103^{2} + \left(39 a + 83\right)\cdot 103^{3} + \left(65 a + 96\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 a + 95 + \left(27 a + 73\right)\cdot 103 + \left(10 a + 82\right)\cdot 103^{2} + \left(9 a + 39\right)\cdot 103^{3} + \left(64 a + 98\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,3,5)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(2,4,6)(3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.