Properties

Label 4.2e6_17e3.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$314432= 2^{6} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 4 x^{3} - 9 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 84 + 97\cdot 103 + 96\cdot 103^{2} + 49\cdot 103^{3} + 65\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 22 + \left(24 a + 8\right)\cdot 103 + \left(61 a + 60\right)\cdot 103^{2} + \left(71 a + 98\right)\cdot 103^{3} + \left(72 a + 72\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 35\cdot 103 + 53\cdot 103^{2} + 8\cdot 103^{3} + 42\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 94 a + 7 + \left(49 a + 5\right)\cdot 103 + \left(47 a + 2\right)\cdot 103^{2} + \left(11 a + 91\right)\cdot 103^{3} + \left(79 a + 44\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 a + 59 + \left(78 a + 98\right)\cdot 103 + \left(41 a + 96\right)\cdot 103^{2} + \left(31 a + 5\right)\cdot 103^{3} + \left(30 a + 74\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 101 + \left(53 a + 63\right)\cdot 103 + \left(55 a + 102\right)\cdot 103^{2} + \left(91 a + 54\right)\cdot 103^{3} + \left(23 a + 9\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$4$ $3$ $(1,4,6)$ $-2$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.