Properties

Label 4.2e6_13e2_29e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 13^{2} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$9096256= 2^{6} \cdot 13^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 4 x^{4} + 22 x^{3} - 105 x^{2} + 146 x - 22 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 + 26\cdot 53 + 7\cdot 53^{2} + 35\cdot 53^{3} + 12\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 52 + \left(21 a + 5\right)\cdot 53 + \left(20 a + 35\right)\cdot 53^{2} + \left(29 a + 36\right)\cdot 53^{3} + \left(4 a + 11\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 28 + \left(47 a + 5\right)\cdot 53 + 18\cdot 53^{2} + 9\cdot 53^{3} + \left(46 a + 34\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 8 + \left(31 a + 51\right)\cdot 53 + \left(32 a + 41\right)\cdot 53^{2} + \left(23 a + 27\right)\cdot 53^{3} + 48 a\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 48\cdot 53 + 28\cdot 53^{2} + 41\cdot 53^{3} + 40\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 a + 35 + \left(5 a + 20\right)\cdot 53 + \left(52 a + 27\right)\cdot 53^{2} + \left(52 a + 8\right)\cdot 53^{3} + \left(6 a + 6\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(2,4)$ $-2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,6)(2,4,5)$ $-2$
$4$ $3$ $(1,3,6)$ $1$
$18$ $4$ $(1,2,3,4)(5,6)$ $0$
$12$ $6$ $(1,4,3,5,6,2)$ $0$
$12$ $6$ $(1,3,6)(2,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.