Properties

Label 4.2e6_13e2_17e2.5t4.1c1
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 13^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$3125824= 2^{6} \cdot 13^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 28 x - 40 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 74 + 198\cdot 277 + 211\cdot 277^{2} + 211\cdot 277^{3} + 17\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 149 + 224\cdot 277 + 210\cdot 277^{2} + 247\cdot 277^{3} + 255\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 162 + 55\cdot 277 + 154\cdot 277^{2} + 10\cdot 277^{3} + 91\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 195 + 70\cdot 277 + 191\cdot 277^{2} + 208\cdot 277^{3} + 45\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 253 + 4\cdot 277 + 63\cdot 277^{2} + 152\cdot 277^{3} + 143\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$12$$5$$(1,2,3,4,5)$$-1$
$12$$5$$(1,3,4,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.