Properties

Label 4.2e6_11e2_23e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{6} \cdot 11^{2} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$4096576= 2^{6} \cdot 11^{2} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 7 x^{4} - 18 x^{3} + 32 x^{2} - 36 x + 47 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 7 + \left(9 a + 16\right)\cdot 19 + \left(5 a + 10\right)\cdot 19^{2} + \left(18 a + 1\right)\cdot 19^{3} + \left(17 a + 14\right)\cdot 19^{4} + \left(17 a + 1\right)\cdot 19^{5} + \left(16 a + 10\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 9 + \left(8 a + 16\right)\cdot 19 + \left(3 a + 17\right)\cdot 19^{2} + \left(15 a + 17\right)\cdot 19^{3} + \left(4 a + 9\right)\cdot 19^{4} + \left(8 a + 14\right)\cdot 19^{5} + \left(12 a + 10\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ a + 6 + \left(9 a + 8\right)\cdot 19 + \left(13 a + 6\right)\cdot 19^{2} + 14\cdot 19^{3} + \left(a + 13\right)\cdot 19^{4} + \left(a + 1\right)\cdot 19^{5} + \left(2 a + 9\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 3 + \left(10 a + 12\right)\cdot 19 + \left(15 a + 12\right)\cdot 19^{2} + \left(3 a + 10\right)\cdot 19^{3} + \left(14 a + 18\right)\cdot 19^{4} + \left(10 a + 17\right)\cdot 19^{5} + \left(6 a + 14\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 3 + 18\cdot 19 + 11\cdot 19^{2} + 8\cdot 19^{3} + 3\cdot 19^{4} + 13\cdot 19^{5} + 11\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 12 + 4\cdot 19 + 16\cdot 19^{2} + 3\cdot 19^{3} + 16\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,6,5,4)$
$(1,5)(2,4)$
$(3,5)(4,6)$
$(2,6,4)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$9$$2$$(2,4)(3,5)$$0$
$2$$3$$(1,3,5)(2,6,4)$$-2$
$2$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(1,5,3)$$1$
$6$$6$$(1,2,3,6,5,4)$$0$
$6$$6$$(1,4,3,6,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.