Properties

Label 4.66112.6t13.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $66112$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(66112\)\(\medspace = 2^{6} \cdot 1033 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.8818423496.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.1033.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.8818423496.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - 9x^{4} + x^{3} + 34x^{2} + 45x - 238 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 29 a + 26 + \left(5 a + 4\right)\cdot 41 + \left(21 a + 16\right)\cdot 41^{2} + \left(26 a + 16\right)\cdot 41^{3} + \left(30 a + 18\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 + 20\cdot 41 + 9\cdot 41^{2} + 15\cdot 41^{3} + 26\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 26 + 2\cdot 41 + 33\cdot 41^{2} + 31\cdot 41^{3} + 20\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 a + 31 + \left(35 a + 33\right)\cdot 41 + \left(19 a + 32\right)\cdot 41^{2} + \left(14 a + 33\right)\cdot 41^{3} + \left(10 a + 1\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 39 a + 12 + \left(30 a + 24\right)\cdot 41 + \left(11 a + 13\right)\cdot 41^{2} + \left(10 a + 3\right)\cdot 41^{3} + \left(24 a + 17\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 2 a + 6 + \left(10 a + 37\right)\cdot 41 + \left(29 a + 17\right)\cdot 41^{2} + \left(30 a + 22\right)\cdot 41^{3} + \left(16 a + 38\right)\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(1,3)$$0$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)(2,5,6)$$1$
$4$$3$$(2,5,6)$$-2$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,2,3,5,4,6)$$-1$
$12$$6$$(1,3)(2,5,6)$$0$