Properties

Label 4.2e4_7e2_139e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{4} \cdot 7^{2} \cdot 139^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$15147664= 2^{4} \cdot 7^{2} \cdot 139^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} - 5 x^{3} + 20 x^{2} - 18 x + 58 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 18 + \left(15 a + 4\right)\cdot 23 + \left(11 a + 13\right)\cdot 23^{2} + \left(22 a + 5\right)\cdot 23^{3} + \left(17 a + 16\right)\cdot 23^{4} + \left(19 a + 12\right)\cdot 23^{5} + \left(3 a + 11\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 + 22\cdot 23 + 22\cdot 23^{2} + 3\cdot 23^{3} + 6\cdot 23^{4} + 14\cdot 23^{5} + 17\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 3 + \left(22 a + 22\right)\cdot 23 + \left(10 a + 18\right)\cdot 23^{2} + \left(3 a + 10\right)\cdot 23^{3} + \left(13 a + 9\right)\cdot 23^{4} + \left(7 a + 14\right)\cdot 23^{5} + \left(6 a + 8\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 10 + \left(7 a + 17\right)\cdot 23 + \left(11 a + 20\right)\cdot 23^{2} + 15\cdot 23^{3} + \left(5 a + 6\right)\cdot 23^{4} + \left(3 a + 11\right)\cdot 23^{5} + \left(19 a + 22\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 + 22\cdot 23 + 20\cdot 23^{2} + 2\cdot 23^{3} + 21\cdot 23^{4} + 22\cdot 23^{5} + 17\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 18 + 2\cdot 23 + \left(12 a + 18\right)\cdot 23^{2} + \left(19 a + 6\right)\cdot 23^{3} + \left(9 a + 9\right)\cdot 23^{4} + \left(15 a + 16\right)\cdot 23^{5} + \left(16 a + 13\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(3,6,5)$
$(1,2)(3,6)$
$(1,4,2)(3,6,5)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$3$$2$$(1,3)(2,6)(4,5)$$0$
$9$$2$$(1,2)(3,6)$$0$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$2$$3$$(1,4,2)(3,5,6)$$-2$
$4$$3$$(1,2,4)$$1$
$6$$6$$(1,6,4,3,2,5)$$0$
$6$$6$$(1,3,2,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.