Properties

Label 4.2e4_7e2_113e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 7^{2} \cdot 113^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1131231248= 2^{4} \cdot 7^{2} \cdot 113^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} - 5 x^{3} + 6 x^{2} - 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 107 + 10\cdot 109 + 91\cdot 109^{2} + 36\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 98 a + 102 + \left(82 a + 9\right)\cdot 109 + \left(100 a + 85\right)\cdot 109^{2} + \left(67 a + 56\right)\cdot 109^{3} + \left(34 a + 71\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 91 + \left(26 a + 103\right)\cdot 109 + \left(8 a + 102\right)\cdot 109^{2} + \left(41 a + 23\right)\cdot 109^{3} + \left(74 a + 38\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 105 + 20\cdot 109 + 56\cdot 109^{2} + 36\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 60 + \left(108 a + 101\right)\cdot 109 + \left(33 a + 32\right)\cdot 109^{2} + 103\cdot 109^{3} + \left(43 a + 92\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 88 a + 81 + 79\cdot 109 + \left(75 a + 67\right)\cdot 109^{2} + \left(108 a + 69\right)\cdot 109^{3} + \left(65 a + 26\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(2,3)$$-2$
$9$$2$$(1,5)(2,3)$$0$
$4$$3$$(2,3,4)$$1$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$18$$4$$(1,2,5,3)(4,6)$$0$
$12$$6$$(1,2,5,3,6,4)$$0$
$12$$6$$(1,5,6)(2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.