Properties

Label 4.2e4_7e2_113.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 7^{2} \cdot 113 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$88592= 2^{4} \cdot 7^{2} \cdot 113 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} - 9 x^{3} + 12 x^{2} + 11 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 100 a + 48 + \left(10 a + 95\right)\cdot 109 + \left(67 a + 54\right)\cdot 109^{2} + \left(36 a + 50\right)\cdot 109^{3} + \left(49 a + 7\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 7\cdot 109 + 52\cdot 109^{2} + 38\cdot 109^{3} + 81\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 39 + \left(98 a + 6\right)\cdot 109 + \left(41 a + 2\right)\cdot 109^{2} + \left(72 a + 20\right)\cdot 109^{3} + \left(59 a + 20\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 + 45\cdot 109 + 89\cdot 109^{2} + 100\cdot 109^{3} + 28\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 103 a + 48 + \left(12 a + 22\right)\cdot 109 + \left(20 a + 6\right)\cdot 109^{2} + \left(80 a + 83\right)\cdot 109^{3} + \left(77 a + 95\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 42 + \left(96 a + 41\right)\cdot 109 + \left(88 a + 13\right)\cdot 109^{2} + \left(28 a + 34\right)\cdot 109^{3} + \left(31 a + 93\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $2$
$6$ $2$ $(4,5)$ $0$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$4$ $3$ $(1,2,3)$ $-2$
$18$ $4$ $(1,4,2,5)(3,6)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $-1$
$12$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.