Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 + 86\cdot 137 + 135\cdot 137^{2} + 49\cdot 137^{3} + 10\cdot 137^{4} + 60\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 19 + 110\cdot 137^{2} + 105\cdot 137^{3} + 81\cdot 137^{4} + 2\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 30 + 79\cdot 137 + 87\cdot 137^{2} + 80\cdot 137^{3} + 114\cdot 137^{4} + 129\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 31 + 60\cdot 137 + 125\cdot 137^{2} + 16\cdot 137^{3} + 123\cdot 137^{4} + 78\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 96 + 10\cdot 137 + 92\cdot 137^{2} + 26\cdot 137^{3} + 42\cdot 137^{4} + 33\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 104 + 128\cdot 137 + 112\cdot 137^{2} + 21\cdot 137^{3} + 25\cdot 137^{4} + 70\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 121 + 84\cdot 137 + 62\cdot 137^{2} + 129\cdot 137^{3} + 43\cdot 137^{4} + 122\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 134 + 97\cdot 137 + 95\cdot 137^{2} + 116\cdot 137^{3} + 106\cdot 137^{4} + 50\cdot 137^{5} +O\left(137^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,5)(3,4)(6,8)$ |
| $(1,3)(5,8)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
| $(1,8)(2,7)(3,5)(4,6)$ |
| $(1,2,5,4)(3,6,8,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,3)(2,6)(4,7)(5,8)$ | $-4$ |
| $2$ | $2$ | $(1,5)(2,4)(3,8)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,7)(3,8)(4,6)$ | $0$ |
| $4$ | $2$ | $(1,7)(2,5)(3,4)(6,8)$ | $0$ |
| $4$ | $4$ | $(1,2,5,4)(3,6,8,7)$ | $0$ |
| $4$ | $4$ | $(1,4,5,2)(3,7,8,6)$ | $0$ |
| $4$ | $4$ | $(1,8,3,5)(4,7)$ | $0$ |
| $4$ | $4$ | $(1,5,3,8)(4,7)$ | $0$ |
| $4$ | $4$ | $(1,6,3,2)(4,8,7,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.