Properties

Label 4.2e4_73e3.8t21.1c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{4} \cdot 73^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$6224272= 2^{4} \cdot 73^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 12 x^{5} - 7 x^{4} - 12 x^{3} + 52 x^{2} + 24 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.73.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 15 + 86\cdot 137 + 135\cdot 137^{2} + 49\cdot 137^{3} + 10\cdot 137^{4} + 60\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 110\cdot 137^{2} + 105\cdot 137^{3} + 81\cdot 137^{4} + 2\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 30 + 79\cdot 137 + 87\cdot 137^{2} + 80\cdot 137^{3} + 114\cdot 137^{4} + 129\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 31 + 60\cdot 137 + 125\cdot 137^{2} + 16\cdot 137^{3} + 123\cdot 137^{4} + 78\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 96 + 10\cdot 137 + 92\cdot 137^{2} + 26\cdot 137^{3} + 42\cdot 137^{4} + 33\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 104 + 128\cdot 137 + 112\cdot 137^{2} + 21\cdot 137^{3} + 25\cdot 137^{4} + 70\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 121 + 84\cdot 137 + 62\cdot 137^{2} + 129\cdot 137^{3} + 43\cdot 137^{4} + 122\cdot 137^{5} +O\left(137^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 134 + 97\cdot 137 + 95\cdot 137^{2} + 116\cdot 137^{3} + 106\cdot 137^{4} + 50\cdot 137^{5} +O\left(137^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,5)(3,4)(6,8)$
$(1,3)(5,8)$
$(1,3)(2,6)(4,7)(5,8)$
$(1,8)(2,7)(3,5)(4,6)$
$(1,2,5,4)(3,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,3)(2,6)(4,7)(5,8)$$-4$
$2$$2$$(1,5)(2,4)(3,8)(6,7)$$0$
$2$$2$$(1,3)(5,8)$$0$
$2$$2$$(1,5)(2,7)(3,8)(4,6)$$0$
$4$$2$$(1,7)(2,5)(3,4)(6,8)$$0$
$4$$4$$(1,2,5,4)(3,6,8,7)$$0$
$4$$4$$(1,4,5,2)(3,7,8,6)$$0$
$4$$4$$(1,8,3,5)(4,7)$$0$
$4$$4$$(1,5,3,8)(4,7)$$0$
$4$$4$$(1,6,3,2)(4,8,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.