Properties

Label 4.2e4_67e3_167e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{4} \cdot 67^{3} \cdot 167^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$22412680708304= 2^{4} \cdot 67^{3} \cdot 167^{3} $
Artin number field: Splitting field of $f= x^{5} - 8 x^{3} + 6 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.67_167.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 23 + \left(20 a + 13\right)\cdot 29 + \left(5 a + 1\right)\cdot 29^{2} + \left(14 a + 9\right)\cdot 29^{3} + \left(16 a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 17 + \left(21 a + 4\right)\cdot 29 + \left(25 a + 2\right)\cdot 29^{2} + \left(14 a + 22\right)\cdot 29^{3} + \left(21 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 22 + \left(8 a + 7\right)\cdot 29 + \left(23 a + 9\right)\cdot 29^{2} + \left(14 a + 16\right)\cdot 29^{3} + \left(12 a + 12\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 5 + \left(7 a + 10\right)\cdot 29 + \left(3 a + 22\right)\cdot 29^{2} + \left(14 a + 12\right)\cdot 29^{3} + \left(7 a + 17\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 + 21\cdot 29 + 22\cdot 29^{2} + 26\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.