Properties

Label 4.2e4_5e5_7e2.5t3.2c1
Dimension 4
Group $F_5$
Conductor $ 2^{4} \cdot 5^{5} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$2450000= 2^{4} \cdot 5^{5} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} + 20 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 8 + 26 a\cdot 29 + \left(28 a + 5\right)\cdot 29^{2} + \left(8 a + 22\right)\cdot 29^{3} + \left(21 a + 25\right)\cdot 29^{4} + \left(9 a + 21\right)\cdot 29^{5} + \left(11 a + 2\right)\cdot 29^{6} + \left(15 a + 18\right)\cdot 29^{7} + \left(23 a + 20\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 10 + 2\cdot 29 + 12\cdot 29^{2} + 15\cdot 29^{3} + 4\cdot 29^{4} + 24\cdot 29^{5} + 7\cdot 29^{6} + 11\cdot 29^{7} + 13\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 a + \left(22 a + 2\right)\cdot 29 + \left(25 a + 7\right)\cdot 29^{2} + \left(24 a + 14\right)\cdot 29^{3} + \left(24 a + 18\right)\cdot 29^{4} + \left(12 a + 19\right)\cdot 29^{5} + \left(11 a + 5\right)\cdot 29^{6} + \left(7 a + 3\right)\cdot 29^{7} + \left(14 a + 20\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 21 + \left(6 a + 16\right)\cdot 29 + \left(3 a + 26\right)\cdot 29^{2} + \left(4 a + 25\right)\cdot 29^{3} + \left(4 a + 1\right)\cdot 29^{4} + \left(16 a + 1\right)\cdot 29^{5} + \left(17 a + 21\right)\cdot 29^{6} + \left(21 a + 28\right)\cdot 29^{7} + \left(14 a + 25\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 19 + \left(2 a + 7\right)\cdot 29 + 7\cdot 29^{2} + \left(20 a + 9\right)\cdot 29^{3} + \left(7 a + 7\right)\cdot 29^{4} + \left(19 a + 20\right)\cdot 29^{5} + \left(17 a + 20\right)\cdot 29^{6} + \left(13 a + 25\right)\cdot 29^{7} + \left(5 a + 6\right)\cdot 29^{8} +O\left(29^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(2,4,3,5)$
$(1,5,3,2,4)$
$(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(2,3)(4,5)$$0$
$5$$4$$(2,4,3,5)$$0$
$5$$4$$(2,5,3,4)$$0$
$4$$5$$(1,5,3,2,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.