Properties

Label 4.2e4_5e4_17e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{4} \cdot 5^{4} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2890000= 2^{4} \cdot 5^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 6 x^{4} + 14 x^{3} - 14 x^{2} + 4 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.2e2.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 5 + \left(8 a + 10\right)\cdot 13 + \left(6 a + 12\right)\cdot 13^{2} + \left(3 a + 10\right)\cdot 13^{3} + \left(9 a + 7\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + \left(5 a + 7\right)\cdot 13 + \left(11 a + 11\right)\cdot 13^{2} + \left(11 a + 11\right)\cdot 13^{3} + \left(8 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 11 + \left(7 a + 1\right)\cdot 13 + \left(a + 4\right)\cdot 13^{2} + \left(a + 12\right)\cdot 13^{3} + \left(4 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 2\cdot 13 + 9\cdot 13^{2} + 6\cdot 13^{3} + 12\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 7 + \left(4 a + 3\right)\cdot 13 + \left(6 a + 11\right)\cdot 13^{2} + \left(9 a + 7\right)\cdot 13^{3} + 3 a\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 + 3\cdot 13^{2} + 2\cdot 13^{3} + 4\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(2,3)$$2$
$9$$2$$(1,5)(2,3)$$0$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$4$$3$$(2,3,4)$$1$
$18$$4$$(1,2,5,3)(4,6)$$0$
$12$$6$$(1,2,5,3,6,4)$$0$
$12$$6$$(1,5,6)(2,3)$$-1$
The blue line marks the conjugacy class containing complex conjugation.